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Preface

This book gives a comprehensive introduction to the tools required for direct
N -body simulations. The contributors are all active researchers who write
in detail on their own special fields in which they are leading international
experts. It is their previous and current connections with the Cambridge Insti-
tute of Astronomy, as staff or visitors, that gives rise to the title. The material
is generally at a level suitable for a graduate student or postdoctoral worker
entering the field.

The book begins with a detailed description of the codes available for
N -body simulations. In a second chapter we find different mathematical for-
mulations for special treatments of close encounters involving binaries or
multiple systems, which have been implemented. The concept of chaos and
stability plays a fundamental role in celestial mechanics and is highlighted
here in a presentation of a new formalism for the three-body problem. The
emphasis on collisional stellar dynamics enables the scope to be enlarged
by including methods relevant for comparison purposes. Modern star clus-
ter simulations include additional astrophysical effects by modelling real stars
instead of point-masses. Several contributions cover the basic theory and com-
prehensive treatments of stellar evolution for single stars as well as binaries.
Questions concerning initial conditions are also discussed in depth. Further
connections with reality are established by an observational approach to data
analysis of actual and simulated star clusters. Finally, important aspects of
hardware requirements are described with special reference to parallel and
GRAPE-type computers. The extensive chapters provide an essential frame-
work for a variety of N -body simulations.

During an extensive summer school on astrophysical N -body simulations,
held in Cambridge, www.cambody.org, the Royal Astronomical Society en-
couraged us to edit a volume on the topic, to be published in The Royal As-
tronomical Society Series. Subsequently, we collected the tutorial lecture notes
assembled in this volume. We would like to take this opportunity to thank
the Royal Astronomical Society for sponsoring the school and the Institute of
Astronomy for provision of school facilities. We are grateful to all the authors
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who took time off from their busy schedules to deliver the manuscripts, which
were then checked for both style and scientific content by the editors. This
collection of topics, related to the gravitational N -body problem, will prove
useful to both students and researchers in years to come.

Cambridge Sverre J. Aarseth
May 2008 Christopher A. Tout

Rosemary A. Mardling
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1

Direct N -Body Codes

Sverre J. Aarseth

University of Cambridge, Institute of Astronomy, Madingley Road, Cambridge
CB3 0HA, UK
sverre@ast.cam.ac.uk

1.1 Introduction

The classical formulation of the gravitational N -body problem is deceptively
simple. Given initial values of N masses, coordinates and velocities, the task
is to calculate the future orbits. Although the motions are in principle com-
pletely determined by the underlying differential equations, accurate solutions
can only be obtained by numerical methods. Self-gravitating stellar systems
experience highly complicated interactions, which require efficient procedures
for studying the long-term behaviour. In this chapter, we are concerned with
describing aspects relating to direct summation codes that have been remark-
ably successful. This is the most intuitive approach and present-day technol-
ogy allows surprisingly large systems to be considered for a direct attack.
Astronomers and mathematicians alike are interested in many aspects of dy-
namical evolution, ranging from highly idealized systems to star clusters where
complex astrophysical processes play an important role. Hence the need for
modelling such behaviour poses additional challenges for both the numerical
analyst and the code designer.

In the present chapter, we concentrate on describing some relevant proce-
dures for star cluster simulation codes. Such applications are mainly directed
towards studying large clusters. However, many techniques dealing with few-
body dynamics have turned out to be useful here and their implementation
will therefore be discussed too. At the same time, the GRAPE special-purpose
supercomputers are increasingly being used for large-N simulations. Hence a
diversity of tools are now employed in modern simulations and the practi-
tioner needs to be versatile or part of a team. This development has led to
complicated codes, which also require an effort in efficient utilization as well as
interpretation of the results. It follows that designers of large N -body codes
need to pay attention to documentation as well as the programming itself.
Finally, bearing in mind the increasing complexity of challenging problems
posed by new observations, further progress in software is needed to keep
pace with the ongoing hardware developments.
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2 S. J. Aarseth

1.2 Basic Features

Before delving more deeply into the underlying algorithms, it is desirable
to define units and introduce the data structure that forms the back-bone
of a general N -body code. From dimensional analysis we first construct
fiducial velocity and time units by Ṽ ∗ = 1 × 10−5(GM�/L

∗)1/2 km s−1,
T̃ ∗ = (L∗3/GM�)1/2 s, with G the gravitational constant and L∗ = 3×1018 cm
as a convenient length unit. Given the length scale or virial radius RV in pc
and total mass NMS in M�, where MS is the average mass specified as in-
put, we can now write the corresponding values for a star cluster model as
V ∗ = 6.557 × 10−2(NMS/RV)1/2 km s−1and T ∗ = 14.94(R3

V/NMS)1/2 Myr.
Hence scaled (or internal) N -body units of distance, velocity and time are
converted to corresponding astrophysical units (pc, km s−1, Myr) by r̃ =
RVr, ṽ = V ∗v, t̃ = T ∗t. Finally, individual masses in M� are obtained from
m̃ = MS m where MS is now redefined in terms of the scaled mean mass.

As the next logical step on the road to an N -body simulation, we consider
matters relating to the initial data. Let us assume that a complete set of initial
conditions have been generated in the form mi, r̃i, ṽi for N particles, where
the masses, coordinates and velocities can be in any units. A standard cluster
model is essentially defined by N,MS, RV, together with a suitable initial
mass function (IMF). After assigning the individual data, we evaluate the
kinetic and potential energy, K and U , taking U < 0. The velocities are scaled
according to the virial theorem by taking vi = q ṽi, where q = (QV|U |/K)1/2

and QV is an input parameter (0.5 for overall equilibrium). Note that, in
general, the virial energy should be used; however, the additional terms are
not known ahead of the scaling. We now introduce so-called standard units
by adopting the scaling G = 1,

∑
mi = 1, E0 = −0.25, where E0 is the

new total energy (< 0). Here the energy condition is only applied for bound
systems (QV < 1), otherwise the convention E0 = 0.25 is adopted. The final
scaling is performed by r̂i = r̃i/S

1/2, v̂i = viS
1/2 with S = E0/(q2K + U).

These variables define a standard crossing time Tcr = 2
√

2T ∗ Myr.
Many simulations include primordial binary stars for greater realism. Be-

cause of their internal binding energies, the above scaling cannot be imple-
mented directly. Instead, the components of each binary are first combined
into one object, whereupon the reduced population of Ns single stars and Nb

binaries are subject to the standard scaling. It then remains for the internal
two-body elements, such as semi-major axis, eccentricity and relevant angles
to be assigned, together with the mass ratio. The choice of distributions is very
wide, but should be motivated by astrophysical considerations. Of special in-
terest here are the periods and mass ratios, which may well be correlated for
luminous stars (e.g. spectroscopic binaries). More complicated ways of pro-
viding initial conditions with primordial binaries can readily be incorporated.
Thus, for example, a consistent set of initial conditions that do not require
scaling may be uploaded. Such a data set might in fact be acceptable by a
well-written code, but this practice is not recommended.
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1.3 Data Structure

The time has now come to introduce the data structure used in the Cambridge
N -body codes. Complications of describing the quantities in a stellar system
arise when some objects are no longer single stars. In the first instance, hard
binaries are treated by two-body regularization (Kustaanheime & Stiefel 1965,
hereafter KS). Now a convenient description refers to the relative motion as
well as that of the centre of mass (c.m.). For the purposes of sequential pre-
dictions and force summations, it is natural to place the two KS components
first in all relevant arrays, followed by single stars, with the c.m. last. Thus
given Np pairs, the type of object can be distinguished by its location i in
the array, compared to 2Np and N . Likewise, for long-lived triples, where the
inner binary of the hierarchy becomes the first member of the new KS pair
and the outer component the second.

The new arrangement necessitates the introduction of so-called ghost stars,
which retain the quantities associated with the outer component, except that
the mass is temporarily set to zero. In other words, a ghost star is a dormant
particle without any gravitational effect since it now forms part of the triple.
Generalization to a quadruple consisting of two binaries forming a new KS
follows readily. Note that in this case a ghost binary must be defined as well
as a ghost c.m. particle. Higher-order systems of increasing complexity are
defined in an analogous manner. The treatment of hierarchies continues as long
as they are defined to be stable, as will be discussed in subsequent sections.

It now remains to introduce the final type of object in the form of a
compact subsystem, which is treated by chain regularization (Mikkola &
Aarseth 1993). Briefly, the idea here is to employ pairwise two-body regu-
larization for the strongest interactions and include the other terms as per-
turbations. Such systems are invariably short-lived, but the special treatment
is most conveniently carried out within the context of the standard data struc-
ture. At least two of the chain members are former components of a KS binary
and the initial membership may be three or four. These systems are usually
created following a strong interaction between a binary and another single
particle or binary. Here one of the members is assigned to the role as the c.m.
for the subsystem while the others become ghosts.

• Single stars 2Np < i ≤ N, Ni = i
• KS pairs 1 ≤ i ≤ 2Np , ip = iicm −N
• C.m. particles i > N, N = N0 + Nk , k = 2ip − 1
• Stable triples KS + ghost, Ncm = −Nk

• Ghost particles Nghost = N2ip−1 , mghost = 0
• Stable quadruples KS + KS ghost, Ncm = −Nk

• Higher orders T + KS, Ncm = − (2N0 + Nk)
• Chain members 2Np < icm ≤ N, Ncm = 0

The table summarizes the key features of the data structure. In order to keep
track of the identity of the particles, we also assign a name to each, denoted by
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Ni. This quantity is useful for distinguishing the type of object, i.e. whether
single, binary or even chain c.m. Thus the name of a binary c.m. is defined
by Ncm = N0 + Nk, where N0 is the initial particle number and Nk is the
name of the first KS component. Likewise, the c.m. of hierarchical systems of
different levels are identified by Ncm < 0 while Ni = 0 for a chain c.m. with
i ≤ N . Note that an arbitrary number of binaries can be accommodated, but
only one chain. Given the location icm of any c.m., the corresponding KS pair
index is obtained from ip = icm −N , with the components at 2ip − 1, 2ip.

A new KS pair is created by exchanging the individual particle components
with the two first single-particle arrays and introducing the corresponding
c.m. at N + Np after Np has been updated. Conversely, termination of a
KS solution requires the former components to be placed in the first available
single-particle array (unless already in the correct location) and the c.m. to be
eliminated. The case of terminating a hierarchical system is more complicated
and will be considered later.

There are many advantages of having a clearly defined and simple data
structure. The analogy with molecules is striking and this also extends to
interactions since some objects may combine while others are disrupted in
response to internal or external effects. On the debit side, all arrays of size
N +Np must be in correct sequential order after each creation or destruction
of an object. Neighbour lists, to be discussed later, must also be updated con-
sistently. However, the overheads still form a small fraction of the total CPU
time. The same procedure applies when distant particles, known as escapers,
are removed from the data set. Again, in the latter case, the name identifies
the type of object involved.

1.4 N -Body Codes

A general N -body code consists of three main parts in the form of initial con-
ditions, integration and run-time data analysis of the results. In the preceding
sections we have discussed some relevant aspects dealing with the initial setup
and data structure. Before attacking the next stage, it is useful to introduce
the various algorithms that are used to advance the solutions. Ideally, differ-
ent objects require a specially designed integration method in order to exploit
the characteristic features. We start by considering single stars, which usu-
ally dominate by numbers and concentrate on the challenge of studying large
systems. The first speed-up of such calculations can be obtained by assigning
individual time-steps according to the local conditions. Since a Taylor series
is used to describe the motion, we are concerned with relative convergence
where smooth orbits in low-density regions may have longer steps.

From the N2 nature of the gravitational problem, the calculation of the
accelerations requires an increasing fraction of the total effort. Hence the sim-
ple approach of direct summation for each integration step is too expensive
and restricts the type of problem for investigation. A second efficiency feature
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called a neighbour scheme (Ahmad & Cohen 1973, hereafter AC) enables con-
sistent solutions to be obtained while still employing direct summation. The
basic idea here is to introduce two time-scales for each particle, where contri-
butions from close neighbours are evaluated frequently by direct summation
while the more distant forces are included (and recalculated) on a longer time-
scale. This two-polynomial scheme speeds up the calculation considerably at
the expense of extra programming. Finally, we also mention the modern way
to study large N and retain strict summation, namely special-purpose com-
puters known as GRAPE (Makino et al. 1997).

Close encounters present another challenge that must be faced, either in
the form of hyperbolic motion or as persistent binaries. Although the time-
steps of two interacting bodies can be reduced accordingly, this may lead
to significant accumulation of errors. A more elegant way, practised in the
Cambridge codes, is to employ two-body regularization as mentioned above.
Now the programming requirements are quite formidable. However, the payoff
is that such solutions can be used with confidence since the equations of motion
are linear for weak perturbations.

The next level of complexity arises when a regularized binary experiences
a strong interaction with another object. A reliance on the two-body formu-
lation makes for inefficient treatment during resonant interactions. Compact
subsystems may instead be studied by three-body (Aarseth & Zare 1974) or
chain regularization (Mikkola & Aarseth 1993). At present the former may be
used if the external perturbations are small, while the latter takes account of
perturbations and allows for up to six members. Once again the programming
effort is substantial, but permits the study of extremely energetic interactions.

One more special procedure remains to be discussed. Although less spec-
tacular, the treatment of long-lived hierarchies requires careful decision-
making. A hierarchy is said to be stable if the orbital elements satisfy certain
conditions. The main property of a stable system is that the inner semi-major
axis should be secularly constant in the presence of an outer bound perturber.
Essentially, the outer pericentre needs to exceed the inner semi-major axis by
a factor depending on the orbital parameters (Mardling & Aarseth 1999).
Once deemed to be stable, the closest perturber is regularized with respect
to the inner binary c.m., which is now treated as a point-mass. However, the
special configuration is terminated on large external perturbations or if the
outer eccentricity increases sufficiently to violate the stability criterion.

The procedures outlined above constitute a veritable tool box for a wide
variety of N -body simulations. Efficient use of these tools requires a complex
network of decision-making. Moreover, it is desirable that the associated over-
heads should only represent a small proportion of the total CPU effort. Some
of the relevant algorithms will be presented in later sections. Suffice it for now
to state that this desirable requirement has been met, as can be ascertained
by so-called run-time profiling.

In the following we shall concentrate on the code nbody6, which combines
all of the above features and is suitable for studying realistic star clusters as
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well as idealized systems on laptops and workstations. However, a section will
be devoted to GRAPE procedures. With the above review as background, we
now move to the next stage of presenting some of the main integration algo-
rithms. In each case, further details are available elsewhere (Aarseth 2003).

1.5 Hermite Integration

Let us start by looking at the derivation of the Hermite scheme that has
proved so successful in modern simulations. We expand Taylor series solution
for the coordinates and velocities to fourth order in an interval Δt by

x1 = x0 + v0Δt+
a0

2
Δt2 +

ȧ0

6
Δt3 +

a
(2)
0

24
Δt4 + α

a
(3)
0

120
Δt5

v1 = v0 + a0Δt+
ȧ0

2
Δt2 +

a
(2)
0

6
Δt3 +

a
(3)
0

24
Δt4 . (1.1)

Here a represents the acceleration, or force per unit mass, which will also
be referred to as force for convenience, and α is an adjustable constant. The
higher-order Newmark implicit method (Newmark 1959) takes the form

x1 = x0 +
1
2
(v0 + v1)Δt− α

10
(a1 − a0)Δt2 +

6α− 5
120

(ȧ1 + ȧ0)Δt3

v1 = v0 +
1
2
(a1 + a0)Δt− 1

12
(ȧ1 − ȧ0)Δt2 . (1.2)

As can be verified by substitution for v1 into the first equation with α = 1,
the standard Taylor series is recovered after some simplification,

a1 = a0 + ȧ0Δt+
1
2
a

(2)
0 Δt2 +

1
6
a

(3)
0 Δt3

ȧ1 = ȧ0 + a
(2)
0 Δt+

1
2
a

(3)
0 Δt2 . (1.3)

The subscripts 0, 1 can be reversed, hence the formulation is time-symmetric
and consistent with the Hermite formulation. It has been shown (Kokubo
& Makino 2004) that α = 7/6 is the optimal choice for the leading term
in the error of the longitude of the periapse. Moreover, secular errors in the
elements a and e are removed by using constant time-steps (in the absence of
encounters) for small eccentricities, e ≤ 0.1. This makes it an efficient scheme
for planetesimal dynamics (see below). It has been found that energy errors
are improved by high-order prediction of the particle being advanced.

It is also instructive to present a traditional formulation of standard Her-
mite integration. We first write a Taylor series for the force per unit mass F
and its explicit derivative F (1) for a given particle i (with index suppressed)
to be advanced by a time interval t as
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F = F 0 + F
(1)
0 t+

1
2
F

(2)
0 t2 +

1
6
F

(3)
0 t3

F (1) = F
(1)
0 + F

(2)
0 t+

1
2
F

(3)
0 t2 . (1.4)

After obtaining the initial values F 0, F
(1)
0 by summation, the coordinates and

velocities of all particles are predicted to low order by

rj =
[(

1
6
F

(1)
0 δt′j +

1
2
F 0

)

δt′j + v0

]

δt′j + r0

vj =
(

1
2
F

(1)
0 δt′j + F 0

)

δt′j + v0 , (1.5)

with δt′j = t − tj , where tj is the time of the last force calculation. New values
F , F (1) are now obtained in the usual way for the particle under consideration.
This enables the higher derivatives to be constructed by inversion, which yields

F
(3)
0 = [2(F 0 − F ) + (F (1)

0 + F (1)) t]
6
t3

F
(2)
0 = [−3(F 0 − F ) − (2F

(1)
0 + F (1)) t]

2
t2
. (1.6)

Consequently, the fourth-order corrector can be applied to the predicted so-
lution of particle i by adding the contributions

Δri =
1
24

F
(2)
0 Δt4 +

1
120

F
(3)
0 Δt5

Δvi =
1
6
F

(2)
0 Δt3 +

1
24

F
(3)
0 Δt4 . (1.7)

Before proceeding, we introduce so-called quantized time-steps according to
the rule

Δtn =
(smax

2

)n−1

, (1.8)

where smax defines the maximum permitted value, usually taken as unity with
standard scaling. Hence every time-step Δti should correspond to some value
of n, which entails a slight reduction from a provisional choice. The reason for
this novel procedure is to reduce the overheads involved in the predictions of
all coordinates and velocities, namely once per step. Moreover, this prediction
is made by hardware when using GRAPE. This procedure is referred to as
a block-step scheme. Thus it requires truncation of the natural step to the
nearest value of n. Moreover, time-steps can only be increased by a factor of
2 every other time to maintain synchronization of all ti + Δti.

Here we also discuss a heliocentric formulation, which has proved efficient
for planetesimal simulations (Kokubo, Yoshinaga & Makino 1998). In helio-
centric coordinates, the equation of motion for a mass-point mi is given by

r̈i = −
N∑

j=1; j �=i

mj

[
ri − rj

|ri − rj |3
+

rj

r3j

]

− M0 +mi

r3i
ri , (1.9)
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where M0 is the mass of the central star or dominant body. If the total mass in
planetesimals is small (e.g. Saturn’s ring), the indirect terms may be neglected.

In concise form, the following algorithm describes the essential steps in-
volved in the integration itself for a group of selected particles.

• Determine members due for updating at new time t
• Predict all r, ṙ to order Ḟ
• Improve ri, ṙi to order F (3) for the first member
• Obtain F , Ḟ due to planetesimals
• Add optional gas drag or tidal damping
• Include the dominant force and first derivative
• Apply the Hermite corrector
• Perform a second iteration by the two last steps
• Specify provisional new time-step Δti
• Compare nearest neighbour step: Δtnb = 0.1R2/R · V
• Check for close encounter: R < Rcl , Ṙ < 0
• Complete the cycle for any other tj + Δtj = t
• Include optional boundary crossings

Some comments on this scheme are in order. It is known as being time-
symmetric Hermite of type P(EC)n (predict, evaluate, correct, etc.). The num-
ber of iterations n is usually chosen as 2, but n = 3 may also be worth while.
Note that for large N , the expensive evaluation of the perturbations is not per-
formed again because the two-body term dominates the errors. On GRAPE,
the procedure for identifying close encounters is implemented by using the
nearest-neighbour facility, which enables a suitable maximum time-step to be
defined. In the alternative case of a standard calculation, the closest parti-
cle can readily be determined from the current neighbour list, which would
usually be small.1 Typically, a close encounter is defined by the distance Rcl,
which signals switching the solution method to regularization (if desired).

1.6 Ahmad–Cohen Neighbour Scheme

Most simulations aim for the largest systems that can be studied with a given
resource. As already remarked, this invariably means the use of some kind of
neighbour (or hybrid) procedure. In the following we summarize the salient
features of the AC scheme since complete descriptions of the Hermite version
are already available (Makino & Aarseth 1992; Aarseth 2003).

The basic idea is to split the total force acting on a particle into two parts,
formally represented by

F (t) =
n∑

j=1

F j + F d(t) , (1.10)

1A full-blown AC scheme might not satisfy the strict time-symmetry condition.
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where the first term contains the contributions from the n nearest neighbours
and F d represents the distant members as well as any external effects. Like-
wise, a similar equation can be written for the force derivative. The basic idea
is to perform direct summation over the neighbours at suitably chosen small
steps and add the predicted contributions from the distant particles, with fit-
ting coefficients recalculated on a longer time-scale, Δtd. This leads to a gain
in performance provided that N � n and Δtd � Δtn can be satisfied.

The total force used for the integration is obtained on the time-scale Δtd
when the neighbour list is also formed. At intermediate times, or so-called
irregular time-steps, the total force and first derivative are evaluated by

F (t) = F n + Ḟ d(t− t0) + F d(t0)
Ḟ (t) = Ḟ n + Ḟ d , (1.11)

where t0 is the time of the last regular force calculation. For convenience,
the two time-steps are commensurate but this is not a formal requirement,
provided the total force is evaluated at the nearest irregular time. The deter-
mination of time-steps for each force polynomial will be discussed in the next
section.

There are several possible strategies for neighbour selection. Essentially,
the choice is between aiming for a constant value of n or adopt a more flexible
approach depending on local conditions. Given that particles in the halo have
smooth orbits as opposed to those in the core that are affected by strong
interactions, it seems appropriate to employ a criterion depending on the
density. The neighbour radius itself is updated according to the relation

Rnew
s = Rold

s

(np

n

)1/3

. (1.12)

Here the predicted neighbour number np is expressed in terms of the density
contrast C ∝ n/R3

s as
np = nmax(0.04C)1/2 , (1.13)

subject to an upper limit. Again the choice of nmax is a matter of taste, but a
value near 2N1/2 has proved itself for large N . In fact, there are compensating
factors affecting code performance such that smaller n requires more frequent
updating of the neighbours. The neighbour selection is made during the total
force calculation using |ri − rj | < Rs and is essentially free since all distances
are calculated in any case.

The combination of two-force polynomials requires some care when there
is a change in the neighbour population. In general, there is a flux across the
neighbour sphere, which must be accounted for in the higher derivatives. To
do this we evaluate the explicit derivatives F

(2)
ij , F

(3)
ij from the corresponding

members j and add or subtract the corrections to the higher derivatives that
are kept separately. However, this extra cost may be avoided by performing
the energy check and result analysis at times commensurate with smax since
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all the solutions are then known to highest order. This is possible because
only predictions up to F

(1)
i are used in the general integration.

As regards performance, the neighbour scheme is comparable to a single-
force polynomial code for N � 50 and speeds up as N1/4. Moreover, a compar-
ison with the GRAPE-6A (so-called micro-Grape) with the same host shows
the latter being faster by a factor of 11 for N = 25 000. Finally, we emphasize
that neighbour lists are also very useful for identifying other close members
in connection with regularization and for estimating the density contrast.

1.7 Time-Step Criteria

Any integration method based on individual time-steps tries to employ an
appropriate criterion, which optimizes the overall solution accuracy. At the
simplest level are expressions of the type

Δt =
α|r|
|v| , Δt =

β|F |
|F (1)|

, (1.14)

where α and β are suitable dimensionless constants. However, such simple
forms invariably cause numerical problems, mainly because close encounters
are not detected in time for step reduction. Since we are dealing with a Taylor
series for the force, it is natural to look for a relative criterion involving higher
derivatives. The most convenient simple time-step can be constructed from

Δt =

(
η|F |
|F (2)|

)1/2

, (1.15)

where η � 0.02 would give reasonable behaviour. For many years this relation
was used with success.

The idea of relative convergence can be extended to take into account all
the force derivatives. Consequently, we write a general expression in the form

Δt =

(
η(|F ||F (2)| + |F (1)|2)
|F (1)||F (3)| + |F (2)|2

)1/2

. (1.16)

This criterion has several useful properties. Compared to (1.15) it gives a well-
defined large value when the force is small, as is the case near a tidal boundary.
Moreover, two bodies with different masses will tend to have similar time-steps
during close encounters, which facilitates decision-making. In fact, after the
truncation according to (1.8) the two steps are often identical, but this cannot
be assumed. It is worth emphasizing that a relative time-step criterion of the
above type is independent of the (non-zero) mass.

From past experience, it seems most efficient to assign slightly different
values for the dimensionless accuracy factors. Hence in most practical work,
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regardless of N , the respective values ηI = 0.02, ηR = 0.03 for the irregular
and regular time-steps have been adopted. For N � 1000, typical time-step
ratios of about 6 are seen; this increases slowly as N is increased.

In the case of planetesimal simulations, special care is needed to ensure
detection of close encounters and physical collisions. We therefore employ an
additional criterion based on the nearest neighbour,

Δt =
βR2

|R · V | , (1.17)

where β = 0.1 has proved sufficient. The different strategies for GRAPE and
conventional computers in this problem were commented on in a previous
section.

For completeness, we also include KS regularization in this discussion since
it has relevance for the general time-step criterion. Briefly, for the unperturbed
case the equation governing the relative motion is given by

F u =
1
2
hu , (1.18)

where h is the specific two-body energy and u the generalized coordinates,
which have the useful property u · u = R. Since h < 0 for a binary, we define
the constant time-step in terms of the frequency as

Δτ =
ηu

(2|h|)1/2
, (1.19)

with ηu = 0.2 for accurate solution (Mikkola & Aarseth 1998). Substitution
into (1.16) by carrying out explicit differentiation (with h′ = 0) simplifies to
the adopted form, thereby giving some support for this apparently complicated
expression. Note that the basic time-step (1.19) is reduced appropriately in
the presence of significant perturbations.

1.8 Two-Body Regularization

Regularization plays an important part in the codes under discussion. In the
following we outline some of the main aspects of the KS method and describe
various relevant algorithms. The latter can be divided into a purely local
part involved with studying the relative motion and a global part that forms
an interface with the whole system. Let us begin with a summary of the
well-known classical formulation (Kustaanheimo & Stiefel 1965) for the 3D
treatment, which is described in more detail elsewhere (Aarseth 2003).

New coordinates in 4D are introduced by the condition

R = u2
1 + u2

2 + u2
3 + u2

4 . (1.20)
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As usual in regularization, a time transformation is also needed and we choose
the simplest differential relation,

dt = R dτ , (1.21)

or t′ = R. It turns out that the coordinate transformation

R = L(u)u (1.22)

is satisfied by the Levi-Civita matrix

L(u) =

⎡

⎣
u1 −u2 −u3 u4

u2 u1 −u4 −u3

u3 u4 u1 u2

⎤

⎦ (1.23)

as can be verified by substitution into the equation for R. For completeness,
we also include the appropriate relations for the relative velocity. Thus the
regularized velocities are obtained by

u′ =
1
2
LT (u)Ṙ , (1.24)

while the physical values are recovered from

Ṙ = 2L(u)u′/R . (1.25)

Starting from the perturbed two-body problem for mk and ml,

R̈ = −mk +ml

R3
R + P , (1.26)

with P the tidal perturbation, the equations of relative motion can be derived.
The complete set is given by

u′′ =
1
2
hu +

1
2
RLT P

h′ = 2u′ · LT P

t′ = u · u , (1.27)

where LT represents the transpose matrix.
The 10 equations describing the relative motion in the presence of external

perturbations are regular in the sense that the solutions are well defined for
R → 0. In order to describe the actual orbit in a stellar system, we introduce
the associated c.m. by

rcm =
mk rk +mlrl

mk +ml
. (1.28)

Likewise, the c.m. force is obtained from

r̈cm =
mk P k +ml P l

mk +ml
. (1.29)
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Hence the c.m. is added to the system of N particles as a fictitious member,
to be advanced in time. Individual coordinates are obtained by combining the
two motions, which yields

rk = rcm + μR/mk

rl = rcm − μR/ml , (1.30)

where μ = mkml/(mk +ml) is the reduced mass, and similarly for the global
velocities.

Given the regularized time-step defined above, the equations for the
relative motion are advanced by an efficient Hermite method (Mikkola &
Aarseth 1998). Although this formulation is fairly complicated, the KS equa-
tions can also be written in standard Hermite form by including the terms F

′

u

and h′′.
Implementation of two-body regularization has many practical benefits.

First, the equations of motion take the form of a perturbed harmonic oscil-
lator and are therefore regular. This treatment permits a constant time-step
for small perturbations while for direct integration, Δt ∝ R3/2 which can
be troublesome when treating very eccentric binaries. Moreover, with lin-
earized equations the accuracy per step is higher and only about 30 steps are
needed for an orbit. Integration of relative motion also permits a faster force
calculation because P ∝ 1/R3 for tidal perturbation. Finally, on the credit
side, unperturbed two-body motion is justified in case there are no perturbers
within a distance d = λa(1 + e), with λ � 100. Likewise, if d > λR, the c.m.
approximation can be used in force calculations with binaries.

The price to pay for all the advantages comes in the form of coordinate and
velocity transformations at the interface between relative and global motion.
However, these operations are fast and do not involve the square root. As
for simulations using GRAPE, there is a further cost due to differential force
corrections since the hardware is based on point-mass interactions.

Several optional features are worth mentioning. For small perturbations,
the principle of adiabatic invariance can be used to slow down the motion
by scaling the perturbation (Mikkola & Aarseth 1996). So-called energy rec-
tification improves the solutions of u,u′ by scaling to the explicit value of
h, which is integrated independently. The availability of completely regular
two-body elements like the semi-major axis (a) and eccentricity (e) can also
be beneficial when employing averaged expressions to model secular evolution
of stable triples or tidal circularization (Mardling & Aarseth 2001).

1.9 KS Decision-Making

A variety of algorithms are involved in the overall management of the regu-
larization scheme. Broadly speaking, we may distinguish between aspects of
initialization, integration and termination and these will be covered in turn.
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The first question which presents itself is when to choose two particles for
regularization treatment. A close encounter is traditionally defined by the two
main parameters

Rcl =
4 rh

N C1/3
, Δtcl = β

(
R3

cl

m̄

)1/2

, (1.31)

where rh is the half-mass radius, C is the central density contrast and β a
dimensionless constant determined by experimentation. Thus a particle with
time-step Δtk < Δtcl needs to have a close neighbour inside the distance Rcl.
Further conditions of negative radial velocity and dominant two-body motion
must also be satisfied. The latter is ensured by comparing the two-body terms
due to any other members identified in the close encounter search. In the case
of GRAPE, a list of particles with small time-steps is maintained and updated
during the force calculation when the host computer is idle.

The principle of initializing KS polynomials is the same as for single parti-
cles, except that time derivatives must also be obtained. By employing explicit
differentiation, the latter terms are readily constructed from the available data
involving u and its derivatives. A conversion by Taylor series expansion for
Δτ finally gives the time-step in physical units, which is used for the schedul-
ing of regularized solutions. Thus any KS pair which needs to be advanced
during the next block-step is treated first.

Initially and during the integration, a consistent perturber list must also
be available. The perturber search is carried out after each apocentre passage,
Rap = a(1+e), using the tidal limit approximation. Particles inside a distance

rp =
(

2mp

mbγmin

)1/3

a (1 + e) (1.32)

are selected from the neighbour list, where mb is the mass of the binary
and γmin is a small dimensionless perturbation, usually taken as 10−6. An
extra procedure is included to increase the neighbour list for c.m. particles if
Rs < λa(1 + e).

A useful quantity for many purposes is the dimensionless relative pertur-
bation, defined by

γ =
|P k − P l|R2

mk +ml
. (1.33)

If evaluated in the apocentre region, this dimensionless quantity is a measure
of dominant two-body motion. In general, it is advantageous to initiate regu-
larization if γ � 0.1, but larger values are acceptable during the treatment.

The KS integration itself begins with the prediction of u and u′ to high-
est order, u(5), while h is predicted to order h(2). As usual in the Hermite
scheme, perturbers are predicted to low order. Transformations yield global
coordinates and velocities, rk, rl, ṙk, ṙl, which are needed for the force calcu-
lation. The physical perturbation P = P k −P l and Ṗ can now be obtained.
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By virtue of the time transformation we have P ′ = R Ṗ . This enables the
corrector to be applied, with new values u,u′ to order u(5) and h to h(4).
An iteration without recalculation of the perturbations improves the final
solution.

The conversion to physical time must also be carried out to highest order.
Taylor series expansion yields the desired terms by successive explicit differ-
entiation, beginning with t′′ = 2u · u′ and continued up to t(6) using known
terms. This permits the corresponding physical time-step to be obtained by

Δt =
6∑

k=1

1
k!
t
(k)
0 Δτk . (1.34)

Time inversion is required when calculating the force on single particles. Given
a physical interval δt, this is achieved by expanding τ̇ = 1/R to sufficient order.
Note that division by R is not dangerous here since the c.m. approximation
is used for small values.

Conditions for unperturbed motion have been alluded to above. By careful
analysis of the velocity distribution of nearby particles, it is possible to extend
the analytical solution to many Kepler periods. This is achieved by identifying
the particles that provide the maximum force as well the smallest time of
minimum approach. If there are no perturbers, we estimate the minimum
time to reach the boundary γ � γmin as well as the free fall time of the
nearest particle. Depending on the remaining time, a number of unperturbed
orbits may be adopted and the KS motion will remain dormant until the next
time for checking. Several extra conditions are also included in order to avoid
premature interactions inside the unperturbed boundary.

Following the general exposition, we now comment on the final stage of the
KS cycle. Termination of hard binaries is appropriate for strong perturbation,
say γ ≥ 0.5, which would most likely result in switching to another dominant
pair (temporary capture or so-called resonance) or chain regularization. For
softer binaries, a smaller perturbation limit is called for. After termination,
standard force polynomials are initialized for the two single particles.

As a technical point, except for collisions, termination is delayed until the
end of the block-step; i.e. until the remaining interval δt = Tblock − t falls
below the physical step Δt converted from Δτ . A final iteration to the exact
value can then readily be performed, with Δτ obtained from τ̇ , τ̈ and δt.

1.10 Hierarchical Systems

Long-lived triples or even quadruples form an important constituent in
N -body simulations. Typically, a triple is formed through a strong interac-
tion between two hard binaries, where the weakest binary is disrupted and
one component is ejected. The other component may then be captured into
an orbit around the inner binary because of energy and angular momentum
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conservation. Such systems may have long life-times and their treatment by
direct integration poses very severe numerical problems (or even code crash)
by loss of accuracy as well as greater effort.

Over the years there has been a quest for stability criteria, which would
allow the description of hierarchies to be simplified by assuming the inner
semi-major axis to be constant, permiting the c.m. approximation to be used.
In the absence of secular changes, the outer component (a single particle or
another binary) may then be regularized with respect to the inner binary c.m.,
thereby speeding up the calculation by a large factor. For this purpose we have
employed a stability criterion that has been tested successfully for a limited
range of parameters (Mardling & Aarseth 1999, 2001). A sharper stability cri-
terion has been developed recently for the general three-body problem, based
on first principles. The underlying theory is discussed in Chap. 3, together
with a practical algorithm that has been implemented in nbody4/6. Given
all the elements describing the inner and outer orbit, this algorithm defines
stability or otherwise for a hierarchical configuration, instead of estimating the
distance from the stability boundary. Consequently, the stability test needs
to be re-assessed during the subsequent evolution.

The identification of a hierarchical candidate system involves checking
many conditions. In the first instance, a search is initiated after each apocen-
tre turning point, provided the c.m. step is sufficiently small; in other words
if Δtcm < Δtcl. This condition implies that the new hierarchy is likely to
form a hard outer binary. However, it should be stated that the same test
is also performed for a new chain regularization, which again involves strong
interactions. After identifying the two most dominant neighbours, the outer
two-body elements are constructed for the main perturber. Among further
conditions to be checked are the perturbation on the outer orbit as well as
the requirement of a new hard binary. Moreover, extra tests are performed if
the outer component is another binary, in which case a modified criterion is
used depending on the ratio of semi-major axes.

Acceptance of the stability condition entails a considerable programming
effort in order to maintain a consistent data structure, as discussed in an
earlier section. The relevant algorithmic steps are set out in the following
table and are mostly self-explanatory.

• Increase the control index for decision-making
• Save relevant masses mk,ml in a hierarchy table
• Copy c.m. neighbour list for later corrections
• Terminate KS solution and update Np and arrays
• Evaluate potential energy of components and old neighbours
• Record R = rk − rl, V = vk − vl and h in the special table
• Form binary c.m. in location of the primary, j = 2Np + 1
• Define ghost (m = 0, x = 106) and initialize prediction variables
• Obtain potential energy of inner c.m. body and neighbours
• Remove ghost from neighbour and perturber lists
• Initialize new KS for outer component in l = k + 1
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• Specify c.m. and ghost names: Ncm = −Nk, Nghost = Nl

• Set pericentre stability limit in R0(Np) for termination test
• Update the internal and differential energy: ΔE = μh0 + ΔΦ

Integration of hierarchical systems proceeds in the usual way, except that the
stability condition needs to be checked. This is done at each apocentre turning
point, using the property Ncm < 0 for identification. One way in which the
stability test may no longer apply is when the outer eccentricity increases due
to perturbations, otherwise similar termination criteria are used as for hard
binaries. For completeness, we also give the algorithm dealing with the main
points of termination.

• Locate current position in the hierarchy table: Ni = Ncm

• Save c.m. neighbours for correction procedure
• Terminate the outer KS solution (k, l) and update Np

• Evaluate potential energy of c.m. wrt neighbours & l
• Determine location of ghost: Nj = Nghost , j = 1, . . ., N +Np

• Restore inner binary components from saved quantities
• Add l to neighbour lists containing first component k
• Initialize force polynomials for outer component
• Copy basic KS variables h, u, u′ from the table
• Re-activate inner binary as new KS solution
• Obtain potential energy of inner components and perturbers
• Update internal energy for conservation: ΔE = ΔΦ − μh
• Reduce control index and compress tables (including escapers)

1.11 Three-Body Regularization

More than 30 years ago a break-through in regularization theory made it pos-
sible to study the strong interactions of three particles (Aarseth & Zare 1974).
The basic idea is simple, namely to employ two different KS solutions of m1

and m2 separately with respect to the so-called reference body m3. It is also
instructive to review this development because of its connection with the sub-
sequent chain regularization mentioned above.

In the following we summarize the key points of the formulation. The
initial conditions are first expressed in the local c.m. frame, with coordinates
ri and momenta pi. Given the three respective distances R1, R2, R, with R
the distance between m1 and m2, and p3 = −(p1 + p2) as the momentum of
m3, the basic Hamiltonian can be written as

H =
2∑

k=1

1
2μk3

p2
k +

1
m3

pT
1 · p2 −

m1m3

R1
− m2m3

R2
− m1m2

R
, (1.35)

with μk3 = mkm3/(mk +m3). As can be seen, the kinetic energy is expressed
by the momenta of m1 and m2 together with a cross product, which represents
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the mutual interaction of m1 and m2. Likewise, the potential energy is a sum
of the three relevant terms. Thus omitting any references to m2 reduces to
the familiar form of the two-body problem.

In analogy with standard KS we introduce a coordinate transformation for
the distances R1 and R2 by

Q2
k = Rk . (k = 1, 2). (1.36)

Several alternative time transformations are available. Here we adopt the orig-
inal choice, which is the most intuitive but not necessarily the best, giving the
differential relation between physical and regularized time

dt = R1R2 dτ . (1.37)

This enables a regularized Hamiltonian to be formed as Γ∗ = R1R2 (H −E0),
where E0 is the initial energy. By construct Γ∗ should be zero along the
solution path. Making use of the KS property p2

k = P 2
k/4Rk, where P k now

is the regularized momentum, the new Hamiltonian becomes

Γ∗ =
2∑

k=1

1
8μk3

Rl P
2
k +

1
16m3

P T
1 A1 · AT

2 P 2

−m1m3R2 −m2m3R1 −
m1m2R1R2

|R1 − R2|
− E0R1R2, (1.38)

where l = 3 − k. For historical reasons, Ai is taken as twice the transpose
Levi-Civita matrix of (1.23). Finally, the equations of motion are given by

dQk

dτ
=

∂Γ∗

∂P k
,

dP k

dτ
= − ∂Γ∗

∂Qk

. (1.39)

It can be seen from inspection of the Hamiltonian that the solutions are reg-
ular for R1 → 0 or R2 → 0. Moreover, the singular terms are numerically
smaller than the regular terms, provided |R1 − R2| > max (R1, R2). Hence a
switch to another reference body can be made when R is no longer the largest
(or second largest) distance, which usually ensures a regular behaviour. Full
details of the transformations can be found in the original publication.

So far three-body regularization has only been used in unperturbed form
within the N -body codes when chain regularization is not available, which
is quite rare. However, it can be quite efficient as a stand-alone code for
scattering experiments. In particular, the simplicity of decision-making as well
as the ability to achieve accurate results by a high-order integrator makes it
a good choice for such problems (Aarseth & Heggie 1976).

1.12 Wheel-Spoke Regularization

The recent interest in massive objects in the form of black holes has inspired
a closer look at alternative regularization methods. The so-called wheel-spoke
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formulation is a direct generalization of three-body regularization to include
more members (Zare 1974). Such a configuration may be appropriate if the
reference body dominates the mass, in which case the need for switching is
no longer an issue and leads to further simplification. The scheme is outlined
here in the expectation that it will prove a popular tool since its effectiveness
has been demonstrated recently (Aarseth 2007).

Let us consider a subsystem of n single particles of mass mi and a dominant
body of mass m0 where the initial conditions q̃i, p̃i are expressed in the local
c.m. frame. Introducing relative coordinates qi with respect to m0, we write
the Hamiltonian as

H =
n∑

i=1

p2
i

2μi
+

1
m0

n∑

i<j

pT
i · pj −m0

n∑

i=1

mi

Ri
−

n∑

i<j

mimj

Rij
, (1.40)

where μi = mim0/(mi + m0) and Ri = |qi|. As can be seen, this is a direct
generalization of (1.35) to n > 2, where m0 plays the role of reference body.
This implies that the technical treatment will also be similar. However, the
original time transformation is now replaced by the inverse Lagrangian energy
as t′ = 1/L since a multiple product would be cumbersome and might not
work for critical cases. This choice has many advantages and would also be
suitable for three-body regularization.

The use of a fixed reference body, albeit with dominant mass, raises a
technical problem of dealing with close encounters between two light bodies.
Thus for small separations, the last term of (1.40) may become arbitrarily
large if Rij → 0. At present this difficulty is overcome by introducing a small
softening in these terms while still retaining the conservative nature of the
Hamiltonian. It turns out that the powerful integrator (Bulirsch & Stoer 1966)
is able to handle quite small values of non-regularized distances so that the
essential dynamics is preserved.

The regularized coordinates and momenta Qi, P i are obtained in the usual
way. Conversely, the physical values are recovered from the inverse transfor-
mations by

qi =
1
2
AT

i Qi, pi =
1
4
AT

i P i/Ri . (1.41)

For completeness, we also give the full set of transformations to the final values
in the local c.m. system, corrected for a sign error,

q̃i = q̃0 + qi , q̃0 = −
n∑

i=1

miqi

/
n∑

i=0

mi

p̃i = pi , (i = 1, . . . , n) p̃0 = −
n∑

i=1

pi . (1.42)

The method presented here may also be used for more conventional calcula-
tions involving comparable masses without the restriction of a fixed reference
body or softening. This would be a simpler alternative to chain regularization,
but would at most be effective for four or five members.
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1.13 Post-Newtonian Treatment

The wheel-spoke formulation is particularly suited to studying a compact sub-
system containing a massive object inside a star cluster. Especially attractive
is the possibility of including relativistic terms in the most dominant two-
body motion. The corresponding post-Newtonian equation of motion can be
written in the convenient form (Blanchet & Iyer 2003; Mora & Will 2004)

d2r

dt2
=

mi +m0

r2

[
(−1 +A)

r

r
+Bv

]
, (1.43)

where the dimensionless quantities A and B represent relativistic effects. Here
the two-body term is contained in the regularized Hamiltonian with the re-
maining contributions added as a perturbation.

The coefficients A, B can be expanded as functions of v/c, with c the speed
of light. Using the current notation, this gives rise to the perturbing force

P GR =
mim0

c2r2

[(

A1 +
A2

c2
+
A5/2

c3

)
r

r
+
(

B1 +
B2

c2
+
B5/2

c3

)

v

]

. (1.44)

Here the first-order precession is described by

A1 = 2(2 + η)
mi +m0

r
− (1 + 3η)v2 +

3
2
ηṙ2 , B1 = 2(2 − η)ṙ , (1.45)

with η = mim0/(mi + m0)2. Next comes the second-order precession terms
A2, B2, which are somewhat more complicated. Of most interest is the energy
loss by gravitational radiation, represented by A5/2, B5/2.

For energy conservation purposes, an extra equation for the relativistic
contribution is integrated according to

ΔEGR =
∫

P GR · v dt . (1.46)

In order to carry out the treatment in regularized time, the right-hand side is
converted into an expression analogous to h′ in (1.27). Also note that deriva-
tive evaluations of the physical perturbation are not required for solution of
first-order equations. The associated time-scale for shrinkage employed in the
decision-making is given by (Peters 1964)

τGR =
5a4c5

64mim2
0

(1 − e2)7/2

g(e)
, (1.47)

where g(e) is a known function and standard N -body units apply.
Implementation of the wheel-spoke scheme into a large N -body code

presents many interesting aspects. To begin with, a suitably compact sub-
system is chosen from a binary containing the heavy body if there is at least
one close perturber inside Rcl. The subsystem is initialized in the usual way,
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including transformations to KS-type variables Q, P . The perturber list is
again constructed according to (1.32), which now yields a smaller mass factor
and hence requires less effort in coordinate prediction.

Although the innermost binary is invariably long-lived, the question of
membership changes must be considered. Decisions of addition or removal are
based on the central distance and radial velocity of perturbers or existing
members, respectively. Simple criteria including a combination of an appro-
priate perturbation (say γ > 0.05) and distance (rp <

∑
Rk) are used in

the former case while removal is controlled by Ṙ2 > 2m0/R and Rk > Rcl.
In analogy with the integration of KS binaries, the c.m. force is obtained by
vectorial summation over the components.

The addition of post-Newtonian terms necessitates the introduction of
physical units. This is achieved by specifying the total mass and half-mass
radius as well as the speed of light. From NMS and rh, we have c = 3×105/V ∗,
with the velocity scaling factor V ∗ expressed in km s−1. This enables the
coalescence distance to be defined as three Schwarzschild radii by

rcoal =
6(mi +m0)

c2
. (1.48)

Alternatively, a disruption distance may be defined for white dwarfs. An ex-
perimental scheme has been adopted where the different GR terms are acti-
vated progressively, depending on the value of the time-scale (1.47). Thus the
radiation term is included first on the supposition that precession does not
play an important role during the early stages. However, due care must be
exercised if the innermost binary is subject to Kozai cycles (Kozai 1962).

Simulations of centrally concentrated cluster models have been made with
a GRAPE code for m0 = N1/2MS and N = 105 equal-mass stars. Here the
innermost binary shrank by a significant factor and also developed very high
eccentricity by the Kozai resonance. In some cases, the resulting pericentre
distance was sufficiently small for stars with white dwarf radii to be affected
by further gravitational radiation shrinkage before disruption (Aarseth 2007).

1.14 Chain Regularization

This contribution would not be complete without a discussion of chain regu-
larization, which has proved to be a powerful tool in star cluster simulations.
In the following we shall review some of the essential features as well as the
main algorithms since the relevant details can be found elsewhere (Mikkola &
Aarseth 1993; Aarseth 2003).

The basic idea takes its cue from three-body regularization. A system is
suitable for special treatment if one hard binary has a close perturber in the
form of a single particle or another binary. Upon termination of the KS binary,
the coordinates and momenta are expressed in the local c.m. frame. Thus N−1
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chain vectors connect the particles experiencing the strongest pair-wise forces
and are defined in terms of the coordinates qk by

Rk = qk+1 − qk , k = 1, . . . , N − 1 . (1.49)

In Hamiltonian theory, the generating function,

S =
N−1∑

k=1

W k · (qk+1 − qk), (1.50)

connects the old momenta with the new ones by pk = ∂S/∂q. The relative
physical momenta W k can then be obtained by the recursion

W k = W k−1 − pk , k = 2, . . . , N − 2 , (1.51)

with W 1 = −p1 and W N−1 = −pN due to the c.m. condition. Substitution
into a Hamiltonian of the type (1.40) yields

H =
1
2

N−1∑

k=1

(
1
mk

+
1

mk+1

)

W 2
k −

N−1∑

k=2

1
mk

W k−1 · W k

−
N−1∑

k=1

mkmk+1

Rk
−

N∑

1≤i≤j−2

mimj

Rij
, (1.52)

where the first momentum term contains the reduced mass. In spite of the sim-
ilarity with (1.40), the formalism differs in some important respects, mainly
because there is no reference body.

As stated earlier, the inverse Lagrangian energy is a good choice for the
time transformation. Multiplication by t′ = 1/L gives the regularized Hamil-
tonian Γ∗ = t′(H −E0), which can be differentiated in the usual way to yield
the equations of motion. Note that for technical reasons, the differentiation of
the product t′H is done explicitly. This procedure enables the term H − E0

(which should be zero) to be retained for stabilizing the solutions. It can be
seen that the two-body solutions are regular for any individual Rk → 0 at
separate times. As usual, the KS relations can be used to recover the physical
variables via the standard transformations

Rk = Lk Qk , W k = Lk P k/2Q2
k, (1.53)

from which the momenta pk are readily derived.
The implementation of chain regularization into an N -body code contains

many algorithms, some of which will be described briefly. Following initial-
ization in the c.m. frame and evaluation of the total energy E0, the chain
vectors must be constructed. The selection of the corresponding chain indices
presents a considerable algorithmic challenge if (as may occur later) there
are more than four members (cf. Mikkola & Aarseth 1993). Thus the scheme
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may not work efficiently if the chain vectors fail to connect the dominant two-
body forces. The canonical variables Q, P are introduced as before and the
integration can begin after specifying a suitably small time-step.

Several quantities are useful for the decision-making. Among these are the
characteristic external perturbation γch and gravitational radius Rgrav, where
the latter represents the effective size of the subsystem. Thus a perturber is
considered for chain membership if γch is significant, provided certain other
conditions are fulfilled. The perturber list is updated at appropriate times
by (1.32), with Rgrav replacing the apocentre distance. Likewise, an existing
member with positive radial velocity is a candidate for removal if we have

Ṙ2
k >

2
∑

mk

Rk
, Rk > 3Rgrav . (1.54)

Here the former condition requires transformation to the local c.m. system.
The chain integration is continued as long as there are at least three members,
with re-initialization after any changes. Note that the membership procedure
also allows for a hard binary to be added or removed.

It turns out that the chain structure is a convenient tool for checking the
dynamical state. Thus any escaping single particle or binary can readily be
identified by considering the distances at the beginning and end of the chain
if N > 3. As in the case of two-body regularization, the internal integration is
continued up to the next block-step time. This entails inverting the integral
of Ldt for an upper limit to ensure that the block-step is not exceeded. Note
that here we do not have a Taylor series expansion for the time derivatives.

In general, termination is carried out if max {Rk} > 3Rcl for three par-
ticles or two hard binaries. Provisions are also included for termination of a
stable hierarchy, followed by switching to the more efficient KS treatment.
As discussed previously, one way in which this can occur is after a strong
interaction of two binaries. Finally, procedures for physical collisions or tidal
circularization are also included, albeit with considerable programming effort.

1.15 Astrophysical Procedures

A star cluster simulation code should include a wide range of astrophysical
processes for a realistic treatment. In the following we touch briefly on some
of the most relevant aspects of the Cambridge codes. By now the addition
of synthetic stellar evolution has enabled the introduction of many interest-
ing features that pose numerical challenges. The simulation of realistic star
clusters requires an IMF containing a significant proportion of heavy stars, as
discussed in Sect. 7.4. It has been known for a long time that a few heavy bod-
ies exert an unduly large influence on the dynamics of stellar systems. Such a
distribution also leads to mass segregation on a short time-scale, which may
be comparable to the main-sequence life-time for typical cluster parameters.
Mass loss from evolving stars is therefore important for all but the youngest
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clusters and its inclusion in a simulation code is essential for observational
interpretation.

Since the basic ingredients of the stellar evolution scheme are discussed
at length in Chaps. 10 and 12, we concentrate on some of the related algo-
rithms here. The primary quantities associated with each star are updated
at sufficiently frequent intervals for a smooth representation. For dynamical
purposes, only the process of mass loss requires special treatment. It is usu-
ally confined to a small fraction of all stars. The main procedures can be
summarized under the following headings.

• Mass loss from single stars and binaries
• Roche-lobe mass transfer and common-envelope evolution
• Magnetic braking and spin-orbit coupling
• Inspiralling of compact binaries
• Supernova explosions and neutron star kicks
• Physical collisions (KS or chain regularization)

In the case of significant mass loss, Δm > 0.1M�, force polynomials for the
nearest neighbours are re-initialized in order to reduce discontinuity effects.
Likewise, appropriate corrections are made to ensure overall energy conserva-
tion. This entails knowledge of the potential since we assume that the ejected
mass escapes rapidly from the cluster. When using GRAPE, the cost of a full
N summation can be avoided in most cases (except small Δti and large Δm)
by employing the available potential, corrected for the net force contribution
up to the current time,

Δφ = −vi · (F i − F tide)(t− ti) . (1.55)

Close binaries undergoing general mass loss on a slow time-scale also re-
quire updating of their KS elements. Consequently, the orbital parameters
are modified at constant eccentricity, based on the adiabatic approximation
Mba = const. A corresponding correction for the inner binary elements of a
hierarchical triple can be carried out explicitly. Here it is necessary to re-assess
the stability condition because the inner orbit expands more than the outer
one.

A realistic period distribution invariably includes binaries that experience
Roche-lobe mass-transfer after the primary leaves the main sequence. This
stage is initiated by tidal circularization or the formation of a circular binary
following common envelope evolution. Since the complicated astrophysical
modelling is discussed in Chap. 12, we limit our comments to some computa-
tional aspects for completeness. For practical reasons, the continuous process
of mass transfer is divided into an active and a coasting phase, where the
latter is updated at frequent intervals. The duration of the active phase is
restricted to the c.m. time-step for consistency with the dynamics. After the
internal adjustment of the essentially circular orbit has been completed, any
system mass loss is corrected for in the same way as for single stars.
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Magnetic braking and inspiralling of compact binaries by gravitational
radiation are catered for both within the Roche process as well as for certain
non-interacting binaries. In either case, changes in the rotational spin of the
components are treated according to the recipes outlined in Chap. 12. We
note that these processes themselves do not involve any mass loss.

Stars above about 8M� undergo supernova explosions and eject a signifi-
cant amount of mass during the transition to neutron stars. In the absence of
a consensus on neutron star kicks, we have adopted a Maxwellian distribution
with large dispersion; hence practically all the neutron stars escape from the
cluster. Now the correction procedure includes the increased kinetic energy
as well as the potential energy contribution of the expelled mass. Since the
ejection of high-velocity members is also a feature of stellar systems contain-
ing binaries, we have implemented an algorithm for preventing discontinuous
changes in the neighbour force for large time-steps.

The determination and implementation of collisions in chain regularization
require special care and have been discussed elsewhere in considerable detail
(Aarseth 2003). For highly eccentric binaries, the KS solution facilitates a
check on the pericentre distance, provisionally identified by a negative product
of the old and new radial velocity R′ = 2u · u′ and R < a. The outcome of
a collision depends on the stellar types so that a variety of remnants may be
produced (see Chap. 12). Here we note that the device of ghost stars can be
used when two stars are replaced by one non-zero mass.

Tidal fields represent another important feature of star cluster simulations.
Two different types of external effects are catered for. Most open clusters
in the solar neighbourhood move in nearly circular orbits, which admit a
linearized tidal force to be included in the equations of motion. This simple
representation gives rise to an energy integral and imposes a tidal boundary
that is useful for defining escape. The tidal radius is given by

rtide =
(

GM

4A(A−B)

)1/3

, (1.56)

where A and B are the classical rotation constants. Traditionally, stars outside
2rtide are removed from the calculation since their subsequent effect on bound
cluster members is negligible.

The general case of 3D motion requires a full galactic model, with explicit
expressions for the force and its derivative. The equations of motion are now
most conveniently expressed in a non-rotating coordinate system (Aarseth
2003). It is still possible to have an approximate energy integral by monitoring
the accumulated work done by the perturbing force P i during each (regular)
time-step. Expanding the integrated contribution to third order in terms of
the initial values and expressing the result at the end of the time-step, we
obtain

ΔEi = mi

(
1
2
ẄiΔt2i − ẆiΔti

)

, (1.57)
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where Ẇi = vi·P i. Knowledge of Ṗ i enables the second order to be included in
the expansion, and the resulting conservation is satisfactory. Although distant
stars are usually removed from the active data structure using a nominal value
of the tidal radius, their orbits in the galactic potential can still be integrated.
Hopefully, these recent code innovations will encourage more comprehensive
studies of eccentric globular cluster orbits and associated tidal tails.

1.16 GRAPE Implementations

Since the use of GRAPE-type special-purpose computers is gaining more
widespread use, it may be of interest to describe some of the procedures
in the simulation code nbody4. In particular, it should be emphasized that
the internal GRAPE data structure differs from the host in several important
respects, which calls for additional software.

We take advantage of the work-sharing facility to speed up the calcula-
tion by carrying out some operations on the host while GRAPE is busy. In
general for large N , many particles are due to be advanced at the same time
but the number may also be quite small during episodes of strong multiple
interactions. After prediction of the first 48 block members nblock, the relevant
procedures can be summarized as follows.

• Begin force calculation for the first block-step members
• Predict the next 48 members (if any) while GRAPE is busy
• Predict ri,vi of c.m. and perturbed KS components (first time)
• Form a list of small time-steps (first time, nblock ≤ 32)
• Correct the previous block members and specify new time-steps
• Copy the force and force derivatives from GRAPE
• Correct the last block members after repeating the above
• Send all the corrected ri,vi and also F i, Ḟ i to GRAPE

The scheduling of particles to be advanced is essentially the same as in
nbody6. However, coordinate and velocity predictions on the host are now
restricted to block-step members since a fast prediction of all particles are
carried out on the GRAPE hardware. When these quantities are copied to
the corresponding GRAPE variables for data transfer, an optional prediction
to second order in the force derivative may be included for increased accuracy.
With regularized binaries present, the data structure on GRAPE consists of
single particles and the c.m. of each KS pair. Consequently, the force acting
on a binary is in the first instance obtained by direct summation from 2Np +1
to N +Np, where a c.m. is treated as a single particle. Differential force cor-
rections are then applied for each binary perturber to be consistent with the
c.m. force and likewise for any perturber forces. These corrections involve sub-
tracting the c.m. terms before adding the vectorial contributions due to the
two components. Any particles which are not on the block-step must there-
fore be predicted on the host before these corrections are performed. Note
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that the subtraction procedure invariably introduces small errors due to the
lower precision of the GRAPE hardware.

Another aspect of the prediction strategy concerns the indirect terms in
the heliocentric formulation (1.9). Again the coordinates and velocities of any
significant members for which tj +Δtj > t need to be predicted first. This can
most readily be achieved by maintaining a list of any important planetesimal
perturber, which is updated following changes in the data structure. In order
to check energy conservation in the heliocentric case, the expression for kinetic
energy takes the form

K =
1
2

N∑

i=1

miv
2
i −

1
2

(
M0 −

∑
mi

)
v2

0 , (1.58)

where v0 = −
∑

mivi/M0 is the velocity of the dominant body of mass M0

and the second sum in (1.58) refers to the heavy perturbers.
As mentioned in Sect. 1.5, the determination of a maximum time-step also

differs when using a GRAPE in connection with (1.9). We employ a special
function that supplies the index of the closest neighbour at no extra cost
during the force evaluation. The current relative coordinates and velocity
R,V define an appropriate time-step Δtnb = 0.1R2/R · V , which may be
smaller than the standard value. Another point to note is that the direct
force summation does not include the dominant body whose effect is added
in the iteration. Since provisional values of F i, Ḟ i for each member on the
block-step are supplied to GRAPE for scaling purposes, it is necessary to
subtract the dominant contributions first. On the other hand, decisions on new
regularizations or terminations are made during the time-step determination
and executed in the usual way at the end of the block-step.

Procedures for wheel-spoke regularization have also been combined with
the GRAPE code nbody4 making a separate version, nbody7. A new feature
here is how to recognize a compact subsystem suitable for special treatment.
Given the presence of a massive binary together with the conditions

R < 2Rcl , rp <
1
4
Rcl (m0/m̄)1/2

, ṙp < 0 , (1.59)

with rp the distance to the closest perturber, this system is initialized and
additional perturbers are selected as for chain regularization. A list of neigh-
bours is updated on the local crossing time, from which significant perturbers
are selected. Frequent checks are made on membership changes of the sub-
system, taking care to avoid near-collisions in the overlap region although no
direct test is made at present.2

The post-Newtonian algorithms discussed above have also been imple-
mented. Again these procedures are carried out on the host computer. Several

2Interactions between subsystem members and perturbers are not softened, hence
the use of an overall perturbation with respect to the c.m. only acts as a guide.
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models where the relativistic terms become important have been studied for
centrally concentrated systems with N = 105 equal-mass particles and one
massive black hole of mass m0 = 300 m̄ (Aarseth 2007). A typical simulation
over 100 time units and including GR coalescence can be done in a few days.
Experience shows that the less powerful GRAPE-6A is well suited for this
purpose since for much of the time the host constitutes the computational
bottleneck, especially during relativistic episodes. Because the central sub-
system is now advanced by the accurate but more expensive Bulirsch–Stoer
method, the overall energy conservation is somewhat better than for standard
cluster simulations.

When using GRAPE, all regularization procedures are treated in essen-
tially the same way as in nbody6. Depending on the requirements, there is
a choice of chain regularization, time-transformed leapfrog (see Chap. 2) or
wheel-spoke method for studying three different types of problems, but only
one scheme is chosen for a given calculation. Some of these procedures are
distinguished by options and there are also different directories containing
routines of the same name. In conclusion, this GRAPE software package has
already yielded some interesting results that open up new avenues for future
exploration.

1.17 Practical Aspects

In the preceding sections we have described the main procedures of the code
nbody6 and also nbody4, which is similar. The actual use of these codes
involves many additional considerations. Here we attempt a general summary
of some practical features that play a key role.

To begin with, the code needs to be installed and tested. This neces-
sitates downloading the software and extracting the relevant files.3 Certain
parameters governing maximum array sizes should be checked, otherwise the
(generous) defaults will be adopted. It is expected that the code will com-
pile successfully on most conventional computers. Likewise, results of the test
input should be examined before any further work is attempted. When try-
ing out a new code, it is of interest to evaluate the performance by so-called
profiling as explained in the manual which can also be downloaded.

A versatile code requires a number of input parameters, especially if there
are many alternative procedures. To facilitate explanation, we distinguish be-
tween different types of input. In the first group are the particle number N ,
maximum neighbour membership nmax, as well as the number of primordial
binaries nbin. The second set of parameters, ηI , ηR, ηu, are concerned with the
integration itself and are dimensionless, i.e. the same for most problems.

Initial conditions may be generated internally or uploaded from a file. In
the former case there is a choice of IMF distributions with upper and lower

3See http://www.ast.cam.ac.uk/research/nbody.

http://www.ast.cam.ac.uk/research/nbody
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mass limits. The main scaling parameters are the length unit RV in pc and
mean mass MS in solar units, as well as the virial theorem ratio QV discussed
earlier. The network of 40 options are defined in a table and allows a vari-
ety of tasks to be considered. However, the choice must be consistent, which
requires due care. All the close encounter parameters have been discussed in
the KS section. Special input templates are also available for simulations with
primordial binaries or cluster orbits in a 3D galactic potential.

An example of typical input parameters is given for illustration purposes,
where the main categories are placed together.

• N = 1000, nmax = 70, ηI = 0.02, ηR = 0.03
• S0 = 0.3, ΔT = 2, Tcrit = 100
• QE = 2 × 10−5, RV = 2, MS = 0.5
• # 1, 2, 5, 7, 14, 16, 20, 23
• Δtcl = 10−4, Rcl = 0.001, ηu = 0.2, γmin = 10−6

• α = 2.3, m1 = 10.0, mN = 0.2

In the second line S0 is an initial guess for the neighbour sphere, the output
interval is ΔT and Tcrit gives the termination time. Moreover, the relative
energy tolerance QE is used for automatic error control. The line of options
contains some useful suggestions but is by no means complete. Finally, the
IMF is defined by the classical Salpeter exponent α, together with the upper
and lower mass limits in terms of the average mass. More detailed information
on the full set of input parameters can be found in the manual. Thus for exam-
ple, there are options for external perturbations or stellar evolution. Taking
into account the wide range of available procedures, the complete input file is
quite compact in comparison with many other large codes.

Presentation of results constitutes another challenge for code development.
It also requires an effort by the practitioner to extract the available data in a
suitable form. Here we may distinguish between result summaries and detailed
information. To elucidate the possibilities, the table summarizes some of the
main optional procedures with a brief explanation.

Procedure Explanation

Cluster core N2 algorithm for core radius and density centre
Lagrangian radii Percentile mass radii and half-mass radius
Error control Automatic error check and restart from last time
Escape Removal of distant members and table updates
Time offset Rescaling of all global times for large values
Event counters Stellar types and remnant statistics
Binary analysis Regularized binary histograms and energy budget
Binary data bank Characteristic parameters for regularized binaries
HR diagram Evolutionary state of single stars and binaries
General data bank Detailed snapshots for data analysis
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Each of these procedures is activated by specifying a non-zero option, as
defined in the manual. There is also a facility for changing any option at
later times. Many of the result summaries are self-explanatory and will not
be reviewed here. Likewise, the manual illustrates the principle of adding new
variables to the code while preserving the total size of the common blocks.

We conclude by commenting on the way in which the total energy is ob-
tained. Thus rather than evaluating the kinetic and potential energies di-
rectly, the different contributions are derived consistently according to the
calculation method. For example, the binding energies of KS pairs are given
by

∑
μihi, where hi is predicted to highest order. Monitoring the internal

energies of hierarchical systems and collisions events enable a conservation
scheme to be maintained at high accuracy because dissipative processes are
also accounted for.
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2.1 Introduction

In N -body simulations the most common strong interactions are due to close
encounters of just two bodies. Most classical numerical integration methods
lose precision for such situations due to the 1/r2 singularity of the mutual
force of the two bodies. In a close encounter the relative motion of the partici-
pating bodies is so fast that, for a brief moment, the rest of the system can be
considered frozen. Consequently, the most important feature of a regularizing
algorithm must be that it can handle reliably the perturbed two-body prob-
lem. There are two basically different types of methods available: Coordinate
and time transformations and algorithms that produce regular results without
coordinate transformation.

The first coordinate-transformation method was that of Levi-Civita (1920),
but the method works only in two dimensions. Later, Kustaanheimo & Stiefel
(1965) generalized this by applying a transformation (KS-transformation)
from four dimensions to three dimensions (see also Aarseth 2003). More re-
cently, two versions of algorithmic regularization have been proposed. These
are the logarithmic Hamiltonian (LogH), suggested by Mikkola & Tanikawa
(1999a, b) and independently by Preto & Tremaine (1999).

A further development, the Time Transformed Leapfrog (TTL), was pre-
sented by Mikkola & Aarseth (2002). Finally, Mikkola & Merritt (2006, 2008)
combined the LogH and TTL as well as a generalized midpoint method to
modify the algorithmic regularization such that it can handle the case of
velocity dependent perturbations, which are important in, for example, post-
Newtonian dynamics (Soffel 1989).

2.2 Hamiltonian Manipulations

All known regularization methods require the introduction of a new indepen-
dent variable. Due to the importance of the Hamiltonian formalism, this is

Mikkola, S.: Regular Algorithms for the Few-Body Problem. Lect. Notes Phys. 760, 31–58

(2008)
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often done by transforming the Hamiltonian. Let qqq and ppp be the coordinates
and momenta, T = T (ppp) the kinetic energy and U = U(rrr, t) the potential.
Then H(ppp,qqq, t) = T (ppp) − U(qqq, t) is the Hamiltonian. If one defines a new
independent variable s by the differential equation

dt = g(p, q, t)ds, (2.1)

the equations of motion can be derived from the extended phase space Hamil-
tonian Γ (Poincaré’s transformation)

Γ = g(p, q, t)(H(p, q, t) +B), (2.2)

where B is the momentum of time and initially

B(0) = −H(p(0), q(0), t0). (2.3)

Time is now a coordinate and one notes that the Poincaré transformation
makes the new Hamiltonian Γ conservative, since it does not depend explicitly
on the new independent variable. Due to this and the choice of the initial value
for B, the numerical values are Γ = 0 and B = −H (binding energy) along
the trajectory.

One often uses

Γ = (H +B)/L; or Γ = (H +B)/U. (2.4)

Here U is the potential energy and L = T +U the Lagrangian. The equations
of motion take the form

t′ =
∂Γ
∂B

= g; q′ =
∂Γ
∂p

= +g
∂H

∂p
+
∂g

∂p
(H +B) (2.5)

B′ = −∂Γ
∂t

= −g ∂H
∂t

− ∂g

∂t
(H +B); p′ = −∂Γ

∂q
= −g ∂H

∂q
− ∂g

∂q
(H +B),

which is correct because H + B = 0 along the orbit. However, this does not
mean that the latter terms can be dropped. The reason for this will become
clear in the example in Sect. 2.3.

Another way to manipulate the Hamiltonian is the use of the functional
Hamiltonian (Preto & Tremaine 1999)

Λ = f(T +B) − f(U), (2.6)

where f(z) is any function that satisfies f ′(z) ≥ 0. A most interesting function
is f(z) = log(z) (Mikkola & Tanikawa 1999a, b; Preto & Tremaine 1999),
which gives t′ = ∂Λ/∂B = 1/(T + B). Along the correct trajectory we also
have 1/(T + B) = 1/U , and thus the time transformation is essentially the
same as g = 1/U . A special feature of the functional Hamiltonian is that it
allows the use of the (symplectic) leapfrog algorithm because the equations of
motion
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ṙrr =
∂Λ
∂ppp

= f ′(T +B)
∂T

∂ppp
; ṗpp = −∂Λ

∂rrr
= f ′(U)

∂U

∂rrr
(2.7)

are such that the right-hand sides do not depend on variables on the left-hand
side.

2.3 Coordinate Transformations

2.3.1 One-Dimensional Case

A simple example is provided by the one-dimensional two-body problem. The
Keplerian Hamiltonian H = p2/2 −M/q may be transformed by the point-
transformation q = Q2, p = P/(2Q) into the form H = P 2/(8Q2) −M/Q2.
Using g = q = Q2, one obtains

Γ = Q2

(
P 2

8Q2
− M

Q2
+B

)

=
1
8
P 2 +BQ2 −M, (2.8)

and the equations of motion are

Q′ =
1
4
P, P ′ = −2BQ; or Q′′ = −B

2
Q, (2.9)

which is a harmonic oscillator because B = −H = constant.
Note that, had we dropped the (H +B) factored terms in (2.5), we would

have had

Q′ =
1
4
P, P ′ = −2

(
1
8
P 2 −M

)

/Q; or Q′′ = −1
2

(
1
8
P 2 −M

)

/Q,

(2.10)

which is singular (but still analytically regular, due to energy conservation
i.e., because 1

8P
2 −M = BQ2).

2.3.2 Three-Dimensional Case: KS-Transformation

The KS-transformations (Kustaanheimo & Stiefel 1965) between the three-
dimensional position and momentum rrr and ppp and the corresponding four-
dimensional KS-variables QQQ and PPP may be written

rrr = Q̂QQQ; ppp = Q̂PPP/(2Q2). (2.11)

Here Q̂ is the KS-matrix (Stiefel & Scheifele 1971, p. 24)

Q̂ =

⎛

⎜
⎜
⎝

Q1 −Q2 −Q3 Q4

Q2 Q1 −Q4 −Q3

Q3 Q4 Q1 Q2

Q4 −Q3 Q2 −Q1

⎞

⎟
⎟
⎠ . (2.12)
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Another way to write the transformation is

x = Q2
1−Q2

2−Q2
3+Q2

4; y = 2(Q1Q2−Q3Q4); z = 2(Q1Q3+Q2Q4). (2.13)

Note that the fourth components of rrr and ppp that (2.11) produces are zeros
due to the structure and properties of the transformation.

Due to increased number of variables, the Q’s corresponding to given phys-
ical coordinates are not unique. However, one may choose any solution, for
example, with rrr = (x, y, z)t, r = |rrr| we calculate

u1 =
√

1
2 (r + |x|)

u2 = Y/(2u1) (2.14)
u3 = Z/(2u1)
u4 = 0,

and the components of QQQ are

QQQ =
{

(u1, u2, u3, u4)t ; X ≥ 0
(u2, u1, u4, u3)t ; X < 0 . (2.15)

(This algorithm is used to avoid round-off error.)
Initial values for the KS momenta are given by

PPP = 2Q̂tppp. (2.16)

For the two-body problem H = 1
2ppp

2−M/r, the time-transformed Hamiltonian
Γ in (2.2) takes the form

Γ =
1
8
PPP 2 −M +BQQQ2, (2.17)

i.e. a harmonic oscillator, in complete analogy with the one-dimensional case.
When regularized by the KS-transformation, the equations of motion for

a perturbed binary
r̈rr +Mrrr/r3 = FFF (2.18)

take the explicit form

QQQ′′ = −1
2
BQQQ+

1
2
rQ̂tFFF

B′ = −2QQQ′ · Q̂tFFF (2.19)
t′ = r = QQQ ·QQQ.

Here FFF is the physical perturbation exerted by other particles (or any other
physical effect) and

B =
M

r
− ppp2

2
is the two-body binding (Kepler-)energy. Since the equations are regular, they
can be solved with any reasonable numerical method.
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2.4 KS-Chain(s)

When the KS-transformation is applied in N -body systems, one does not
obtain a harmonic oscillator, but close approaches can still be regularized.
First, one forms a chain of particles such that all the small critical distances
are included in the chain and then one applies the KS-transformation to the
chain vectors. For details of the chain selection procedure see Sect. 2.7.1.

Let a time-transformed multiparticle Hamiltonian be

Γ = (T − U +B)/(T + U),

where
T =

∑

ν

ppp2
ν/(2mν); U =

∑

i<j

mimj/rij .

Let us introduce new coordinates

XXXk = rrrik
− rrrjk

,

then we can use the generating function

S =
∑

k

WWW k ·XXXk =
∑

k

WWW k · (rrrik
− rrrjk

). (2.20)

In terms of the new momenta WWW , the old ones are

pppν =
∂S

∂rrrν
=
∑

k

WWW k · (δνik
− δνjk

), (2.21)

where the δ’s are the Kronecker symbols. Thus we have

T =
1
2

∑

αβ

TαβWWWα ·WWW β (2.22)

U =
∑

k

mik
mjk

|XXXk|
+

∑

i<j, (i,j) �∈{ik,jk}

mimj

rij
, (2.23)

where
Tαβ =

∑

ν

1
mν

(δνiα
− δνjα

)(δνiβ
− δνjβ

),

and the second potential energy term
∑

i<j, (i,j) �∈{ik,jk}

mimj

rij

contains all the distances rij = rij(X1,X2. . .) that are not included among
the vectors XXXk.
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After application of the KS transformation by (2.11) to every momentum-
coordinate pair by

WWW, XXX → PPP , QQQ,

one can obtain the regularized Hamiltonian

Γ(PPP ,QQQ) = (T − U +B)/(T + U)

and form the canonical equations of motion,

B′ = −∂Γ
∂t

; PPP ′ = − ∂Γ
∂QQQ

(2.24)

t′ =
∂Γ
∂B

; QQQ′ =
∂Γ
∂PPP

. (2.25)

Note that the number of new variables may exceed the number of the old
ones. This, however, is not a problem: all the physical results remain correct
(Heggie 1974).

The above formulation is completely general at least to the point that
all the well-known methods, the Zare (1974) method in which all particles
are regularized with respect to a central body, Heggie’s global regularization
(Heggie 1974) (in which all the interparticle vectors are taken as new variables
and collisions are regularized by the KS transformation) and the chain method
(Mikkola & Aarseth 1993), are included. The vectors XXX of these methods are
schematically illustrated in Fig. 2.1.
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Fig. 2.1. Regularized interactions (schematically) in Zare method (Z), global
method of Heggie (H) and chain method (C)
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In fact, one can regularize any interparticle vector. Thus any kind of
branching and looping chains can be handled. This could be seen as an in-
termediate form between the Heggie method and the chain. However, it is
not clear if such alternatives are actually more useful than the simple chain.
Comprehensive instructions for use of the KS-chain can be found in Mikkola
& Aarseth (1993) and Aarseth (2003).

2.5 Algorithmic Regularization

The algorithmic regularization, contrary to KS regularization, does not use
coordinate transformation but only a time transformation and a suitable al-
gorithm that produces regular results despite the singularity in the force. The
first such methods were invented in 1999 independently in two places (Mikkola
& Tanikawa 1999a, b; Preto & Tremaine 1999).

2.5.1 The Logarithmic Hamiltonian (LogH)

Let ppp be the momenta and qqq the coordinates, T (ppp) the kinetic energy and
U(qqq, t) the force function. Then the Hamiltonian in extended phase-space is

H = T +B − U. (2.26)

Here B is the momentum of time (which is now a coordinate: ṫ = ∂H
∂B = 1).

If B(0) = −H(0), then the function

Λ = log(T +B) − log(U) (2.27)

can be used as a Hamiltonian in the extended phase space.

Demonstration
The equations of motion derivable from Λ read

ppp′ = −∂Λ
∂qqq

=
∂U

∂qqq
/U ; B′ = −∂Λ

∂t
=

∂U

∂t
/U (2.28)

qqq′ =
∂Λ
∂ppp

=
∂T

∂ppp
/Te; t′ =

∂Λ
∂B

= 1/Te, (2.29)

where Te = T + B and a prime denotes differentiation with respect to the
(new) independent variable s.

Since Λ does not depend explicitly on s, the value of Λ is constant.
Thus T +B = U due to choice of initial value for B. Using this and dividing
the equations of motion by the equation for time (2.29), we get for the time
derivatives

ṗpp =
∂U

∂qqq
, Ḃ =

∂U

∂t
and q̇qq =

∂T

∂ppp
, (2.30)

i.e. the normal Hamiltonian equations.
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LogH for Two bodies

To introduce the method we first consider the simple case of two-body motion
H = ppp2/2 −M/r, which gives

Λ = log(ppp2/2 +B) + log(r), (2.31)

after dropping log(M).
Thus the time transformation is

dt = ds
∂Λ
∂B

=
ds

(ppp2/2 +B)
. (2.32)

B remains constant, B = −(ppp2/2 −M/r). The new independent variable s is

s =
∫ t

(ppp2/2 +B) dt =
∫ t M

r
dt, (2.33)

i.e. a quantity proportional to the eccentric anomaly increment.

With stepsize h and initial values ppp0, rrr0, t0, the leapfrog algorithm takes
the form (illustration in Fig. 2.2)
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Fig. 2.2. Illustration of the working of the algorithmic regularization in the case
of an elliptic two-body motion. The points on the ellipse are the starting and end
points in a leapfrog step, while those outside the ellipse are the rrr 1

2
-points
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rrr 1
2

= rrr0 +
h

2
ppp0/(

ppp2
0

2
+B) (2.34)

ppp1 = ppp0 − h rrr 1
2
/r21

2
(2.35)

rrr1 = rrr 1
2

+
h

2
ppp1/(

ppp2
1

2
+B) (2.36)

t1 = t0 +
h

2

[
1

(ppp2
0
2 +B)

+
1

(ppp2
1
2 +B)

]

. (2.37)

This algorithm produces correct positions and momenta on the associated
Keplerian ellipse (Mikkola & Tanikawa 1999a, b; Preto & Tremaine 1999);
however, time is not correct and the method thus has phase errors. This
result applies even for collision orbits where the eccentricity e = 1.

Although the singularity when r → 0 is not removed, one expects the
algorithm to be applicable for the N -body problem since the functions are
not evaluated precisely at r = 0.

2.5.2 Time-Transformed Leapfrog (TTL)

Consider the general system

ṙrr = vvv, v̇vv = FFF (rrr), (2.38)

where rrr and vvv are position and velocity vectors of arbitrary dimension. We
now introduce a time transformation

ds = Ω(rrr) dt, (2.39)

where Ω(rrr) > 0 is arbitrary.
If W = Ω, then one may write

rrr′ = vvv/W, t′ = 1/W, vvv′ = FFF/Ω,

where a prime means d
ds . If W is obtained from the differential equation

Ẇ = vvv · ∂Ω
∂rrr

or W ′ = vvv · ∂Ω
∂rrr

/Ω, (2.40)

instead of W = Ω directly, we have
⎛

⎜
⎜
⎝

rrr′

t′

vvv′

W ′

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

vvv/W
1/W

000
0

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

000
0

FFF (rrr)/Ω(rrr)
vvv · ∂ ln(Ω)/∂rrr

⎞

⎟
⎟
⎠ . (2.41)

This allows the Time-Transformed Leapfrog (TTL):
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rrr 1
2

= rrr0 +
h

2
vvv0

W0
(2.42)

t 1
2

= t0 +
h

2
1
W0

(2.43)

vvv1 = vvv0 + h
FFF (rrr 1

2
)

Ω(rrr 1
2
)

(2.44)

W1 = W0 + h
vvv0 + vvv1

2Ω(rrr 1
2
)
·
∂Ω(rrr 1

2
)

∂rrr 1
2

(2.45)

rrr1 = rrr 1
2

+
h

2
vvv1

W1
(2.46)

t1 = t 1
2

+
h

2
1
W1

. (2.47)

A Simple Fortran Code for Two Bodies (LogH)

implicit real*8 (a-h,m,o-z)

read(5,*)h,tmx,mass ! read stepsize, maximum time & mass

read(5,*)x,y,z,vx,vy,vz ! read initial coords/vels

c initializations

t=0

r=sqrt(x*x+y*y+z*z) !distance

vv=vx*vx+vy*vy+vz*vz !v-square

B=mass/r-vv/2 !binding-E

c

c Integration of the two-body motion

1 continue

dt=h/(vx*vx+vy*vy+vz*vz+2*B) ! time increment

x=x+dt*vx

y=y+dt*vy

z=z+dt*vz

t=t+dt

dtc=h/(x*x+y*y+z*z)

vx=vx-x*dtc

vy=vy-y*dtc

vz=vz-z*dtc

dt=h/(vx*vx+vy*vy+vz*vz+2*B) ! new time increment

x=x+dt*vx

y=y+dt*vy

z=z+dt*vz

t=t+dt ! time has an O(h^3) error

c diagnostics: time, coords & error

write(6,2)t,x,y,z,

& (B+(vx*vx+vy*vy+vz*vz)/2)-mass/sqrt(x**2+y**2+z**2)

if(t.lt.Tmx)goto 1
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2 format(1x,1p,5g12.4)

end

If one takes
Ω = 1/r, (2.48)

the increment of W in one step is

ΔW = −h rrr

r3
· vvv1 + vvv0

2
(2.49)

and

Δ
1
2
vvv2 =

1
2
(vvv2

1 − vvv2
0) =

1
2
(vvv1 − vvv0) · (vvv1 + vvv0) = −h rrr

r3
· vvv1 + vvv0

2
,

which means that, for the unperturbed two-body problem, this algorithm is
mathematically equivalent to the LogH-method (more generally this is the
case if Ω = U). Numerically, however, this does not apply. The reason is that
in case of a close approach W first increases, then decreases fast. This means
that the increments are large numbers and there is considerable cancellation
and possible round-off error. Combined with the extrapolation method, this
alternative leapfrog can be a powerful integrator for some systems.

Remark: Especially interesting is the fact that the method can be efficient
for potentials that differ from the Newtonian 1/r behaviour at small distances.
One notes that both the LogH and TTL are useful for the soft potential

U ∝ 1/
√
r2 + ε2,

which cannot be regularized with the KS-transformation.
Remark: If Ω = 1/r, the (numerical) relation W = 1/r remains valid after

every step and, somewhat surprisingly, this is true for any radial force field
FFF = f(r)rrr/r.

A Simple Fortran Code for Two Bodies (TTL)

implicit real*8 (a-h,m,o-z)

read(5,*)h,tincr,tmx,mass ! read step,tincr, maxtime, mass

read(5,*)x,y,z,vx,vy,vz ! read initial coords/vels

tnext=0

c initializations

t=0

r=sqrt(x*x+y*y+z*z) !distance

vv=vx*vx+vy*vy+vz*vz !v-square

E0=vv/2-mass/r

W=mass/r

c

c Integration of two-body motion
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1 continue

dt=h/W/2 ! time increment

t=t+dt

x=x+dt*vx

y=y+dt*vy

z=z+dt*vz

c

dtc=h/(x*x+y*y+z*z)

dw= -(x*vx+y*vy+z*vz)*dtc/2

vx=vx-x*dtc

vy=vy-y*dtc

vz=vz-z*dtc

W=W+dw-(x*vx+y*vy+z*vz)*dtc/2

c

dt=h/W/2 ! new time increment

t=t+dt ! this has an O(h^3) error

x=x+dt*vx

y=y+dt*vy

z=z+dt*vz

c diagnostics

if(t.lt.tnext)goto 1

tnext=tnext+tincr

r=sqrt(x*x+y*y+z*z)

err=-E0+(vx*vx+vy*vy+vz*vz)/2-mass/r

write(6,2)t,x,y,z,err*r ,W*r-mass ! time, coords & error

if(t.lt.Tmx)goto 1

2 format(1x,1p,10g12.4)

end

2.5.3 A Simple LogH Algorithm for the Three-Body Problem

The three-body problem is still one of the most studied problems in few-body
dynamics. Therefore, it may be of interest to consider in more detail a simple
regular three-body algorithm. This also serves as further illustration of the
use of the algorithmic regularization.

Following Heggie (1974), we use the three interparticle vectors (see Fig. 2.3)

XXX1 = rrr3 − rrr2; XXX2 = rrr1 − rrr3; XXX3 = rrr2 − rrr1 (2.50)

as new coordinates. Let the corresponding velocities be VVV k = ẊXXk, then the
kinetic and potential energies (in c.m. system) can be written

T =
1

2M

∑

i<j

mimjVVV
2
kij

; U =
∑

i<j

mimj

|Xkij
| , (2.51)

where M =
∑

k mk is the total mass and kij = 6 − i − j. The equations of
motion are
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Fig. 2.3. Labelling of vectors in the three-body regularization

ẊXXk = VVV k; V̇VV k = −M XXXk

|XXXk|3
+mk

∑

ν

XXXν

|XXXν |3
, (2.52)

and after the application of the logarithmic Hamiltonian modification they
read

t′ = 1/(T +B); XXX ′
k = ẊXXk/(T +B); VVV ′

k = V̇VV k/U, (2.53)

which are suitable for the leapfrog algorithm, given in (2.58) and (2.59), as
well as for Yoshida’s (1990) higher-order leapfrogs.

The usage of the relative vectors, instead of some inertial coordinates, is
advantageous in attempting to avoid large round-off effects. One could also
integrate only two of the triangle sides, obtaining the remaining one from the
conditions ∑

k

XXXk = 000;
∑

k

VVV k = 000.

However, this hardly reduces the computational effort required by the method.
Instead one may, occasionally, compute the longest side, and the corresponding
velocity, from the above triangle conditions. Note, however, that the sums of
the sides are not only integrals of the exact solution but are also exactly
conserved by the leapfrog mapping.

The transformation from the variables XXX to centre-of-mass coordinates rrr
can be done as
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rrr1 =
(m3XXX2 −m2XXX3)

M
; rrr2 =

(m1XXX3 −m3XXX1)
M

; rrr3 =
(m2XXX1 −m1XXX2)

M
,

(2.54)
and the velocities obey the same rule.

2.6 N -Body Algorithms

In an N -body system the Logarithmic Hamiltonian (LogH)

Λ = ln(T +B) − ln(U), (2.55)

gives the equations of motion

t′ =
∂Λ
∂B

= 1/(T +B); rrr′k = vvvk/(T +B); vvv′k = AAAk/U, (2.56)

where vvvk = ˙rrrk and AAAk = ∂U
∂rrrk

/mk are the velocity and acceleration corre-
spondingly.

It is important to note that the derivatives of coordinates only depend on
velocities and vice versa. This makes a simple leapfrog algorithm possible (see
below). The most important feature is that, as discussed in Sect. 2.5.1, the
resulting leapfrog is exact for two-body motion, except for a phase error, and
thus regularizes close approaches.

The Time-Transformed Leapfrog (TTL) method is a generalization of this
idea (Mikkola & Aarseth 2002). In the time transformation, one chooses some
other function Ω(rrr) in place of the potential U and defines an auxiliary quan-
tity W by the differential equation Ẇ = Ω̇ = ∂Ω

∂rrr · vvv.
The resulting TTL equations read

t′ = 1/W ; rrr′k =
1
W

∂T

∂pppk

; vvv′k =
1
Ω
AAAk; W ′ =

∑

k

∂Ω
∂rrrk

· vvvk/Ω, (2.57)

and these can also be used to construct a leapfrog-like mapping which, for
suitable functions Ω, are asymptotically exact for two-body motion near col-
lision. It can be shown that TTL is mathematically equivalent to LogH if one
takes Ω = U .

2.6.1 LogH Leapfrog

First, one computes the constant B = −T + U from initial values. The equa-
tions of motion can be used to define the basic mappings XXX(s) and VVV (s)
as

XXX(s) : δt = s/(T +B); t → t+ δt; rrrk → rrrk + δt vvvk (2.58)

VVV (s) : δ̃t = s/U ; ppp → pppk + δ̃tAAAk,

which can be evaluated in a sequence

XXX(h/2)VVV (h)X(h/2),

using always the most recent results as input for the next operation.
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2.6.2 TTL

Here one first evaluates the initial value of W = Ω, then uses the leapfrog
mappings

XXX(s) : δt = s/W ; t → t+ δt; rrrk → rrrk + δt vvvk (2.59)

VVV (s) : δ̃t = s/Ω; δvvvk = δ̃tAAAk; W → W + δ̃t
∑

k

∂Ω
∂rrrk

·
(

vvvk +
1
2
δvvvk

)

vvvk → vvvk + δvvvk, (2.60)

to advance the coordinates and velocities using the operation sequence

XXX(h/2)VVV (h)XXX(h/2)

repeatedly.
For Ω one may use any suitable function, but usually it is advantageous

to take
Ω =

∑

i<j

Ωij

rij
,

where
Ωij = 1, or Ωij = mimj ,

the latter choice being recommended if the masses are comparable.
The leapfrog alone is, however, in many cases not accurate enough. The

accuracy can be improved, e.g. by using the higher-order leapfrog algorithms
of Yoshida (1990). Alternatively, one may use the extrapolation method
(Bulirsch & Stoer 1966; Press et al. 1986).

2.7 AR-Chain

First of all it is necessary to emphazise the importance of the chain structure,
not only in the KS-chain method but also when one uses one of the algorith-
mic regularizations. The reason is round-off errors. If one uses centre-of-mass
coordinates, the relative coordinates of a distant close pair are differences
of large numbers and there is considerable cancellation of significant figures,
leading to irrecoverable errors.

This section discusses a new code that uses the chain structure and a
mixture of the LogH and TTL-methods.

2.7.1 Finding and Updating the Chain

We begin by finding the shortest interparticle vector for the first part of the
chain. Next we search for the particle closest to one or the other end of the
presently known part of the chain. This particle is added to the closest end
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Fig. 2.4. Illustration of the chain and the checking of switching conditions. Distances
like R5,7 are compared with the smaller of the two distances R5,6 and R6,7 (marked
by *). Interparticle distances like R4,10 are compared with the smallest of those in
contact with the considered distance (marked by ×)

of the already existing chain. This is repeated until all particles are included
in the chain. The particles are then re-numbered along the chain as 1, 2, . . . N
for ease of programming.

After every integration step, we check for the need of updating the chain.
Figure 2.4 illustrates the case of a 10-particle chain. To avoid some potential
round-off problems, it is advantageous to carry out the transformation from
the old chain vectors XXXk to the new ones directly by expressing the new chain
vectors as sums of the old ones.

Let the actual “physical” names of the chain particles 1, . . ., N (as defined
above) be I1, I2, . . ., IN and let us use the notation Iold

k and Inew
k for the

names in the old and new chains. Then we may write

rrrIold
k

=
k−1∑

ν=1

XXXold
ν (2.61)

XXXnew
μ = rrrInew

μ+1
− rrrInew

μ
. (2.62)

Thus we need to use the correspondence between the old and the new indices
to express the new chain vectors XXX in terms of the old ones. One finds that if
k0 and k1 are two indices such that Iold

k0
= Inew

μ and Iold
k1

= Inew
μ+1, then

XXXnew
μ =

N−1∑

ν=1

BμνXXX
old
ν , (2.63)

where Bμν = +1 if(k1 > ν & k0 ≤ ν) and Bμν = −1 if(k1 ≤ ν & k0 > ν),
otherwise Bμν = 0.
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2.7.2 Transformations

After selecting the chain, and renaming the particles as 1, 2, . . . , N along
the chain, one can evaluate the initial values for the chain vectors and
velocities as

XXXk = rrrk+1 − rrrk (2.64)
VVV k = vvvk+1 − vvvk, (2.65)

where vvvk = ˙rrrk. At the same time one may evaluate the centre-of-mass quan-
tities

M =
∑

k

mk (2.66)

rrrcm =
∑

k

mkrrrk/M (2.67)

vvvcm =
∑

k

mkvvvk/M. (2.68)

The transformation back to rrr,vvv can be done by simple summation

r̃rr1 = 000 (2.69)
ṽvv1 = 000 (2.70)

r̃rrk+1 = r̃rrk +XXXk (2.71)
ṽvvk+1 = ṽvvk + VVV k, (2.72)

followed by reduction to the centre of mass

r̃rrcm =
∑

k

mkr̃rrk/M (2.73)

ṽvvcm =
∑

k

mkṽvvk/M (2.74)

rrrk = r̃rrk − r̃rrcm (2.75)
vvvk = ṽvvk − ṽvvcm. (2.76)

However, it is not always necessary to reduce the coordinates to the centre-
of-mass system since accelerations only depend on the differences.

2.7.3 Equations of Motion and the Leapfrog

The equations of motion read

ẊXXk = VVV k (2.77)
˙VVV k = AAAk+1 −AAAk, (2.78)
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where the accelerations AAAk, with possible external effects fffk, are

AAAk = −
∑

j �=k

mj
rrrjk

|rrrjk|3
+ fffk, (2.79)

and, for j < k

rrrjk =

⎧
⎪⎨

⎪⎩

rrrk − rrrj , if k > j + 2
XXXj , if k = j + 1
XXXj +XXXj+1, if k = j + 2

. (2.80)

For k > j one uses the fact that rrrjk = −rrrkj . The use of XXXj and XXXj +XXXj+1

reduces the round-off effect significantly. More generally, one could also use

rrrkj =
k−1∑

ν=j

XXXν , (2.81)

but for many bodies it is faster to use the above recipe (2.80) and the latter
alternative seems not to improve the results.
The kinetic energy is

T =
1
2

∑

k

mkvvv
2
k, (2.82)

and the potential energy
U =

∑

i<j

mimj

|rrrij |
, (2.83)

which is evaluated along with the accelerations according to (2.80). We intro-
duce further a time transformation function

Ω =
∑

i<j

Ωij

|rrrij |
, (2.84)

where Ωij are some selected coefficients (to be discussed below).
Now one may define the two time transformations

t′ = 1/(α(T +B) + βω + γ) = 1/(αU + βΩ + γ), (2.85)

where α, β and γ are adjustable constants, B = U −T is the N -body binding
energy and ω is defined by the differential equation

ω̇ =
∑

k

∂Ω
∂rrrk

· vvvk, (2.86)

and the initial value ω(0) = Ω(0). The binding energy B changes according to

Ḃ = −
∑

k

mkvvvk · fffk. (2.87)
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The equations of motion that can be used to construct the leapfrog which
provides algorithmic regularization are, for time and coordinates respectively,

t′ = 1/(α(T +B) + βω + γ) (2.88)

rrr′k = t′vvvk, (2.89)

and for velocities B and ω,

τ ′ = 1/(αU + βΩ + γ) (2.90)

vvv′k = τ ′AAAk (2.91)

B′ = τ ′
∑

k

(−mkvvvk · fffk) (2.92)

ω′ = τ ′
∑

k

∂Ω
∂rrrk

· vvvk. (2.93)

To account for the vvv-dependence of B′ and ω′, one must follow Mikkola &
Aarseth (2002), i.e. first the vvvk are advanced and then the average < vvvk >=
(vvvk(0) + vvvk(h))/2 is used to evaluate B′ and ω′.

The leapfrog for the chain vectors XXXk and VVV k can be written most easily
in terms of the two mappings

XXX(s) :

δt = s/(α(T +B) + βω + γ) (2.94)

t = t+ δt (2.95)
XXXk → XXXk + δtVVV k (2.96)

(2.97)

VVV (s) :

δ̃t = s/(αU + βΩ + γ) (2.98)

VVV k → VVV k + δ̃t(AAAk+1 −AAAk) (2.99)

B → B + δ̃t
∑

k

(−mk < vvvk > ·fffk) (2.100)

ω → ω + δ̃t
∑

k

∂Ω
∂rrrk

· < vvvk >, (2.101)

where < vvvk > is the average of the initial and final vvv’s here. Note that it is
also necessary to evaluate the individual velocities vvvk, because the expression
for B′ and ω′ would otherwise (in terms of the chain vector velocities VVV k)
become rather cumbersome.

One leapfrog step can then be written simply as

XXX(h/2)VVV (h)XXX(h/2),
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and a longer sequence of n steps reads

XXX(h/2)
[
Πn−1

ν=1 (VVV (h)XXX(h))
]
VVV (h)XXX(h/2).

This is the formulation to be used with the extrapolation method when pro-
ceeding over a total time interval of length nh.

2.7.4 Alternative Time Transformations

If one takes
Ωj = mimj , (2.102)

then α = 0, β = 1, γ = 0 is mathematically equivalent to α = 1, β = γ = 0,
as was shown in Mikkola & Aarseth (2002). However, numerically these are
not equivalent, and the LogH alternative is much more stable. On the other
hand, as noted above, it is desirable to get stepsize shortening (and thus
regularization) also for encounters of small bodies and thus some function Ω
should also be included.

To increase the numerical stability for strong interactions of big bodies
and smooth the encounters of small bodies, one may use α = 1, β 	= 0 and

Ωij =

{
m̃2, if mimj < εm̃2

0, otherwise
, (2.103)

where m̃2 =
∑

i<j mimj/(N(N − 1)/2) is the mean mass product and ε

an adjustable parameter (ε ∼ 10−3 may be a good guess). It is sometimes
advantageous to integrate (2.86) for ω even if β = 0. This is because the
integrator (extrapolation method!) is forced to use short steps where ω̇ is
large, thus giving higher precision when required.

Remarks

1. If (α, β, γ) ∝ (1, 0, 0), the method is the logarithmic Hamiltonian method
(LogH) of Mikkola & Tanikawa (1999a).

2. If (α, β, γ) ∝ (0, 1, 0), the method is the transformed leapfrog (TTL)
(Mikkola & Aarseth 2002).

3. If (α, β, γ) ∝ (0, 0, 1), the method is the normal basic leapfrog.
4. Which combination of the numbers (α, β, γ) is best cannot be answered in

general. For N -body systems with very large mass ratios, one must have
β 	= 0, but some small value is advantageous. This is because low-mass
bodies do not contribute significantly to the energies and if β = 0, the
stepsize is not reduced sufficiently during a close encounter.



2 Regular Algorithms for the Few-Body Problem 51

2.8 Basic Algorithms for the Extrapolation Method

2.8.1 Leapfrog

The extrapolation method (Gragg 1964, 1965; Bulirsch & Stoer 1966), which
extrapolates results from a simple basic integrator to zero stepsize, is one of
the most efficient methods to convert results of low-order basic integrators into
highly accurate final outcomes. Often such an integrator can be conveniently
chosen to be a composite integrator, like the leapfrog. Let the differential
equations to be

ẋxx = fff(yyy); ẏyy = ggg(xxx), (2.104)

then one can construct the the simple leapfrog algorithm

xxx 1
2

= xxx0 +
h

2
fff(yyy0) (2.105)

yyy1 = yyy0 + hggg(xxx 1
2
) (2.106)

xxx1 = xxx 1
2

+
h

2
fff(yyy1). (2.107)

One notes that this is a slightly generalized formulation of the very basic
leapfrog, which is obtained if fff(yyy) = yyy. In this case therefore xxx would be the
coordinate vector, yyy the velocity vector and ggg(xxx) the acceleration.

Let us introduce the two mappings (or “subroutines”)

XXX(s) : xxx → xxx+ sfff(yyy) (2.108)

and
YYY (s) : yyy → yyy + sggg(xxx), (2.109)

with which the above leapfrog can be symbolized as XXX(h/2)YYY (h)XXX(h/2).
When we want to compute n steps of stepsize = h/n, we can write

XXX

(
h

2n

)[

YYY

(
h

n

)

XXX

(
h

n

)]n−1

YYY

(
h

n

)

XXX

(
h

2n

)

. (2.110)

This advances the system over the time interval h.
The final results can now be considered to be a function of h/n and thus

it is possible to extrapolate to zero stepsize. Due to the time symmetry of the
leapfrog, the error has an (asymptotic) expansion of the form

a2(h/n)2 + a4(h/n)4 + . . .,

i.e. the expansion contains only even powers of h. This makes the extrapolation
process particularly efficient.



52 S. Mikkola

2.8.2 Midpoint Method

In addition to the leapfrog algorithm, commonly used in connection with
the extrapolation method, we have the so-called modified midpoint method.
This algorithm can also be formally written as a leapfrog. Let the differential
equation be

żzz = fff(zzz), (2.111)

and let us split this into two parts as

ẋxx = fff(yyy); ẏyy = fff(xxx). (2.112)

If this pair of equations is solved using the initial conditions xxx(0) = yyy(0) =
zzz(0), the solution is simply xxx(t) = yyy(t) = zzz(t). On the other hand, (2.112) is
of the same form as (2.104) except that ggg = fff , and it is possible to construct
the leapfrog algorithm

xxx 1
2

= xxx0 +
h

2
fff(yyy0) (2.113)

yyy1 = yyy0 + hfff(xxx 1
2
) (2.114)

xxx1 = xxx 1
2

+
h

2
fff(yyy1), (2.115)

the results of which can also be used for extrapolation to zero stepsize. Note
that it is the vector xxx that is extrapolated while here yyy is just an auxiliary
quantity. If one defines the mapping

AAA(yyy,xxx, s) : xxx → xxx+ sfff(yyy), (2.116)

then, similar to (2.110), one can write for the results with stepsize = h/n

AAA

(

yyy,xxx,
h

2n

)[

AAA

(

xxx,yyy,
h

n

)

AAA

(

yyy,xxx,
h

n

)]n−1

AAA

(

xxx,yyy,
h

n

)

AAA

(

yyy,xxx,
h

2n

)

,

(2.117)
where xxx = zzz(0), yyy = zzz(0) initially.

2.8.3 Generalized Midpoint Method

Here we introduce a generalization of the well-known modified midpoint
method. In this algorithm, the basic approximation to advance the solution
is not just the evaluation of the derivative at the midpoints, but any method
to approximate the solution. Thus e.g. the algorithmic regularization by the
leapfrog can be used even when there are additional forces depending on ve-
locities. This provides a regular basic algorithm, which is made suitable for
the extrapolation method by means of the generalized midpoint method.

The starting point in this algorithm (Mikkola & Merritt 2006, 2008) is the
same as in the previous (midpoint method) section, i.e. the problem considered
is
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żzz = fff(zzz), zzz(0) = zzz0, (2.118)

and it is split into two as ẋxx = fff(yyy), ẏyy = fff(xxx) and the leapfrog-like algorithm
(the modified midpoint method) is

xxx 1
2

= xxx0 +
h

2
fff(yyy0), yyy1 = yyy0 + hf(xxx 1

2
), xxx1 = xxx 1

2
+
h

2
fff(yyy1).

A new interpretation of the above can be obtained by first rewriting it in the
form

xxx 1
2

= xxx0 +
[

+
h

2
fff(yyy0)

]

(2.119)

yyy 1
2

= yyy0 −
[

−h

2
f(xxx 1

2
)
]

(2.120)

yyy1 = yyy 1
2

+
[

+
h

2
f(xxx 1

2
)
]

(2.121)

xxx1 = xxx 1
2
−
[

−h

2
fff(yyy1)

]

. (2.122)

In (2.119) the bracketed term is an (Euler-method) approximation to the
increment of xxx over the time interval h/2 with the initial value yyy0, while in
(2.120) the initial value is xxx 1

2
≈ xxx(h/2) and the time interval is −h/2. Finally,

this increment is added – with a minus sign – to yyy0 to obtain an approximation
for yyy(h/2). In the remaining formulae (2.121) and (2.122), the idea is the same
but the roles of xxx and yyy have been changed.

A generalization of this follows readily. Let d(zzz0,Δt) be an increment for
zzz, such that

zzz(Δt) ≈ zzz0 + d(zzz0,Δt) (2.123)

is an approximation to the solution of (2.118) over a time interval Δt. One
step in the generalized midpoint method can now be written

xxx 1
2

= xxx0 + d
(

yyy0,+
h

2

)

(2.124)

yyy 1
2

= yyy0 − d
(

xxx 1
2
,−h

2

)

(2.125)

yyy1 = yyy 1
2

+ d
(

xxx 1
2
,+

h

2

)

(2.126)

xxx1 = xxx 1
2
− d

(

yyy1,−
h

2

)

, (2.127)

or, if we define the mapping (or “subroutine”)

AAA(xxx,yyy, h) : xxx → xxx+ d
(

yyy,+
h

2

)

(2.128)

yyy → yyy − d
(

xxx,−h

2

)

, (2.129)
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we can write the algorithm with many (n) steps as

1. Initialize yyy = xxx;
2. Repeat AAA(xxx,yyy, h)AAA(yyy,xxx, h) n times; (2.130)
3. Take xxx as the final result.

Thus one simply calls the subroutine AAA alternately with arguments (xxx,yyy) and
(yyy,xxx) such that the sequence is time-symmetric (starts and stops with xxx in
(2.130)).

This basic algorithm has the correct symmetry – because it was derived
from a leapfrog-like treatment and thus the Gragg-Bulirsch-Stoer extrapola-
tion method can be used to obtain high accuracy.

This generalized midpoint algorithm may be especially useful if one
employs a special method, well-suited to the particular problem at hand, to ob-
tain the increment ddd. For the few-body problem, with velocity-dependent ex-
ternal perturbations, such a method is the algorithmic regularization leapfrog.
The external perturbation (with possible dependence on velocities) can be
added to the increment as

d → d + Δtfff(vvv, ..), (2.131)

where fff is the external perturbation and vvv is the most recent velocity value
available. Further on, the leapfrog can be replaced by any other method that
is not necessarily time-symmetric since the algorithm generates the right kind
of symmetry.

2.8.4 Lyapunov Exponents

When the Lyapunov exponents (usually the largest one is sufficient) are re-
quired, the normal practice is that one derives the variational equations and
then programs the integration of those equations. In practice there exists an-
other, simpler, way to do the necessary programming:

1. First one writes the code to integrate the basic problem. It is a good idea
to use rather simple program statements.

2. One differentiates the resulting (and tested!) code, line by line, adding the
necessary lines for evaluation of the variations.

3. This is the simplest way to write the code for the variations, since there
is no reason to consider the variational equations at all. Instead, one me-
chanically differentiates every program statement, thus getting the exact
variations of the algorithm.

4. That is the best one can do!

Perhaps, the best way to clarify the above is to give a simple example. Here
is a leapfrog algorithm for the harmonic oscillator. First is shown the pure
harmonic oscillator code, then the version with variations. The differentiated
lines that evaluate the variations are marked as “var”.
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c Leapfrog code for a harmonic oscillator:

c-----------------------------------------------

implicit real*8 (a-h,o-z)

x=1

p=0

h=0.01d0

E0=(p*p+x*x)/2

t=0

1 continue

x=x+h/2*p ! this is

p=p-h*x ! a leapfrog

x=x+h/2*p ! step

t=t+h

c diagnostics

E=(p*p+x*x)/2

write(6,*)t,x,p,E-E0

if(t.lt.100.)goto 1 ! max time=100.

end

c Differentiated leapfrog for harmonic oscillator

c----------------------------------------------

implicit real*8 (a-h,o-z)

x=1

dx=1 ! var

p=0

dp=0 ! var

E0=(p*p+x*x)/2

dE0=p*dp+x*dx ! var

t=0

h=0.01d0 ! stepsize

1 continue

x=x+h/2*p ! this is

dx=dx+h/2*dp ! var

p=p-h*x ! a leapfrog

dp=dp-h*dx ! var

x=x+h/2*p ! step

dx=dx+h/2*dp ! var

t=t+h

c diagnostics

E=(p*p+x*x)/2

dE=p*dp+x*dx ! var (this should be constant!)

write(6,*)t,x,p,E-E0,dE-dE0

if(t.lt.100.)goto 1 ! max time=100.

end

The harmonic oscillator example is almost trivial but explains anyway how the
variations can be obtained by differentiating the original code mechanically,
without any need to consider the variational equations. The same technique
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is useful for almost any algorithm, however complicated. One easy check to
implement for the the variations is based on the fact that the differentials
of constants of motion are also constants of motion. Above there is only one
integral, the total energy. The differential should thus remain (approximately)
constant. In the few-body problem this applies to the components of angular
momentum also. Finally, in terms of the variations δq, the Lyapunov expo-
nents (approximations for) can be obtained as

λ ≈ ln(|δq|)/t (2.132)

when the time t is sufficiently large.
In time-transformed systems all the variables, including the time t, have

variations. Often the results are wanted in the “physical” system where time is
the independent variable. One must thus eliminate the time-variation effect.
If f is any function of the system variables and time, the physical system
variation Δf and the time-transformed system variation δf are related by

Δf = δf − δt ḟ , (2.133)

where ḟ is the total time derivative of f .

2.9 Accuracy of the AR-Chain

To demonstrate the ability of the AR-chain code to handle large mass ratios,
we plot in Fig. 2.5 the energy and angular momentum errors in a system with
a wide range of masses (two masses m1 = m2 = 1, and the rest were assigned
values 0.1, 0.01, 0.001, . . . , 10−8. Due to the large range of masses, the KS-chain

cannot integrate the motions in this system satisfactorily, but AR-chain is fast
and accurate.

The system evolves by ejecting most of the small masses in the time interval
illustrated. The energy errors in this example are shown in two ways: the
uppermost curve gives the relative error in energy computed as 1−E/E0 while
the lowermost curve is the value of the logarithmic Hamiltonian (essentially
the same as (E − E0)/U . The absolute error of the angular momentum is
also illustrated in the figure. Somewhat surprisingly, the relative error of the
energy fluctuates considerably, while the value of the logarithmic Hamiltonian
evolves much more slowly. The reason for this is that, since the Hamiltonian
is log((T −E/U)), the algorithm attempts to keep this quantity constant (and
not the energy E). In fact, it is inevitable that integration errors give a small
non-zero value for the logarithmic Hamiltonian log((T − E)/U) = ε, from
which we can derive the energy error

δE = εU, (2.134)

assuming the logarithmic Hamiltonian remains constant. Thus it is essentially
the variation of the potential energy U that causes the fluctuation of the
energy error in the above figure. We conclude that all the illustrated errors
are sufficiently small, of the order of magnitude of round-off error effects.
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Fig. 2.5. Errors in a 10-body problem integrated with the AR-chain code. The
system consists of a heavy binary (component masses = 1, eccentricity e = 0.5) and
the other particles have masses 10−n for n = 1, 2, 3, . . . , 8. Uppermost curve: relative
error of energy (= 1 − E/E0); lowermost curve: log((T − E)/U), which is the value
of the logarithmic Hamiltonian; the thick curve (AM): absolute error in the angular
momentum

2.10 Conclusions

Experience has shown that generally the AR-chain is comparable in accuracy
with the KS-chain in most practical problems (the one-dimensional N -body
problem being an exception). With the modified midpoint method, AR-chain

is efficient also in problems with velocity-dependent external forces. A further
advantage is the fact that, contrary to KS-chain, soft potentials can readily
be treated without any problem. Also the differentiation of the algorithms
is sufficiently simple, especially for the three-body algorithm, discussed in
Sect. 2.5.3, so that one can evaluate the Lyapunov exponents.

In summary:

1. KS-chain is the most efficient KS-regularized code, but restricted to com-
parable masses (say mass ratios of ∼ 104). A possible drawback for some
problems is that a soft potential cannot be used.

2. LogH is a good alternative for comparable masses.
3. TTL can handle large mass ratios, but may suffer from round-off errors.
4. AR-chain can handle large mass ratios and soft potential. With the gen-

eralized midpoint method, velocity-dependent external forces can also be
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included with no problem. Consequently, AR-chain is a good alternative
to the KS-chain and in many problems the best method.

5. For all the algorithms discussed here, use of the extrapolation method
(Bulirsch & Stoer 1966; Press et al. 1986) is necessary to improve the
leapfrog results to high accuracy.

Finally, it is necessary to stress that the codes discussed here are stand-alone
few-body codes requiring additional programming when implementing them
for large N -body systems.1
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3.1 Introduction

In his Oppenheimer lecture entitled “Gravity is cool, or, why our universe is
as hospitable as it is”, Freeman Dyson discusses how time has two faces: the
quick violent face and the slow gentle face, the face of the destroyer and the
face of the preserver (Dyson 2000). He entirely attributes these two faces to
gravity and the ease with which gravitational energy can change irreversibly
into other forms of energy. The simplest system exhibiting these two faces is
that of three gravitating bodies; for most configurations, the slow gentle face
is the norm, while for a very important subset, violence is the order of the day.
In fact it is this violence, resulting in one of the bodies being ejected from the
system, which is responsible for much of the structure we see in the universe,
from planets to giant elliptical galaxies.

The simplest example of a quiescent gravitating system is that of two
bodies orbiting each other at a distance large enough that their potentials
are essentially those of point masses. Their paths about the common centre
of mass are simple ellipses, and these paths do not change from orbit to
orbit; their shapes (eccentricities) are preserved as are their sizes (semi-major
axes) and orientations in space (inclination and longitudes of periastron and
ascending nodes measured with respect to some reference set of axes; see
Fig. 3.1). However, add one more body to the system and this wealth of
symmetry is lost, at least to some extent. In the simplest case, if the binary
components have equal mass and the third body orbits the binary in the same
plane and is “sufficiently distant”, the original binary will simply rotate about
its centre of mass: this is apsidal motion. Its eccentricity and semi-major axis
will not be affected, and the third body will orbit the centre of mass of the
binary as if the latter were a single body with mass equal to the sum of the
component masses. No net energy or angular momentum is exchanged between
the inner and outer orbits in this simple case. If the inner binary components
have different masses, some angular momentum is exchanged between the
orbits, with the result that the eccentricities oscillate about some mean values.

Mardling, R.A.: Resonance, Chaos and Stability: The Three-Body Problem in Astrophysics.
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Fig. 3.1. Orbital elements specifying the orientation and phase of a binary relative
to a fixed coordinate system: ω is the argument of periastron; Ω is the longitude of
the ascending node; I is the orbital inclination and f is the true anomaly, the latter
being one of several ways of specifying the orbital phase

This is most pronounced when one body is much more massive than the other
two, as is the case in a planetary system, because very close stable systems
can exist.

If the orbit of the third body is out of the plane of the binary, in addition
to apsidal motion both orbits will rock (nutate) up and down, that is, their
relative inclination will oscillate about some mean value and the planes of their
orbits will rotate about the direction defined by the total angular momentum
of the system (precession).1 No energy and very little angular momentum is
exchanged between the orbits of such a system,2 even though the eccentricity
of the inner binary may oscillate substantially about some mean value, a
phenomenon called the Kozai effect (Kozai 1962).

These variations of the elements generally occur on time-scales much longer
than the component orbital periods and are referred to as secular variations.
They are characterized by zero energy exchange between the orbits, which
manifests itself in the constancy of the semi-major axes of both the inner
and the outer orbits.3 In contrast to this, unstable systems, defined as those
for which one body eventually escapes to infinity, necessarily must exchange
energy between the orbits in order for this to occur. If one makes a plot in
the parameter space of initial conditions associated with secular and unstable
behaviour, one finds a very sharp boundary between the two.

I was led to the study of stability in the three-body problem after dis-
covering that the energy exchange process between the tides and the orbit
in a close binary system can be chaotic (Mardling 1995a,b). One day Sverre

1Note that apsidal motion is often mistakenly referred to as precession.
2Again, except if the system is a very close planetary-like system.
3Except for stable resonant systems; see later.
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Aarseth was looking at my stability plots and commented that they reminded
him of some plots made by Peter Eggleton and Luda Kiseleva for three-body
hierarchies (Eggleton & Kiseleva 1995). He wondered whether or not the two
problems might be linked. It turns out that they are; much of the analysis
presented in this chapter can equally be applied to the binary-tides problem.

Throughout this chapter I will refer to five intimately related works sub-
mitted or in progress: M1a (Mardling 2008a) and M1b discuss stability in the
three-body problem, the former coplanar systems and the latter inclined, M2
discusses the resonant structure of eccentric planetary systems, M3 (Mardling
2008b) presents a simple formalism for studying the secular evolution of arbi-
trary triple configurations,4 while M4 presents a new formalism for studying
strong three-body interactions.

3.2 Resonance in Nature

The most familiar example of resonance in action is a parent pushing a child
on a swing. The only way to increase the amplitude of the swing consistently
is to push it at its natural frequency. But if you think about it, the “natural
frequency” varies depending on the amplitude of the swing; while it is pretty
much constant over the range of amplitudes tolerated by most children, for
the intrepid child who prefers heights substantially more than that of the
parent’s, one needs to wait considerably longer for her to complete a full swing
before she gets her next push! This amplitude dependence of the frequency is a
characteristic of non-linear oscillators of which the pendulum is one example,
and we will see that it is fundamental to understanding stability in the three-
body problem.

Resonance is responsible for both structure and destruction in Nature, and
not just via gravity. It is Nature’s way of moving energy around in bulk. For
example, molecular structure depends on resonance between internal elec-
tronic states; the formation of carbon in stars via the triple-alpha process
relies on a resonant reaction between an alpha particle and a very short-lived
beryllium nucleus, leading to the formation of an excited state of the carbon
nucleus; even the Archimedes spiral of a sunflower relies on resonance for its
formation [see Reichl (1992) for a discussion of the golden mean as the “most
irrational number”]. But when gravity is involved, resonance plays a role on
every astrophysical scale through the dynamics of three-body instability.

3.2.1 Three-Body Processes in Astrophysics

Three-body processes are at the heart of structure on all astrophysical scales,
from planet formation via the accumulation of planetesimals to giant elliptical
galaxies through the forced collisions of smaller galaxies. Processes occurring

4Some animations of stable and unstable triples may be found at
http://users.monash.edu.au/~ro.

http://users.monash.edu.au/~ro
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in star clusters include binary–single star scattering in the cores of globular
clusters, a process largely responsible for the prevention of total core col-
lapse (Aarseth 1971), the formation of X-ray binaries in globular cluster cores
through binary–single and binary–binary collisions (Hills 1976), the formation
of massive stars that almost certainly occasionally (if not exclusively) form
through collisions induced in small-N systems, the building of intermediate-
mass black holes through the so-called Kozai mechanism (Aarseth 2007), the
formation of close binaries through the Kozai mechanism (Eggleton & Kiseleva
2001; Fabrycky & Tremaine 2007), the stability or otherwise of planetary sys-
tems in star clusters (Spurzem et al. 2006), and hypervelocity stars originat-
ing from galactic centre (Hills 1976). In addition, many objects thought to
be binary stars are revealing themselves to be triple or higher-order config-
urations (Tokovinin et al. 2006); such systems may well be the remnants of
even higher-order systems that have decayed since their birth in the natal star
cluster (Reipurth & Clarke 2001).

To understand all these processes it is necessary to understand how energy
and angular momentum move around inside a triple, and under what circum-
stances a given configuration is stable. The rest of this chapter is devoted to
this question through a study of resonance in the three-body problem.

3.3 The Mathematics of Resonance

3.3.1 The Pendulum

Before we discuss resonance, it is necessary to review the mechanics of a
pendulum. As we will show, pendulum-like behaviour is fundamental to an
understanding of the three-body problem.

The equation governing the motion of a pendulum of length l in a uniform
gravitational field g is

φ̈+ ω2
0 sinφ = 0, (3.1)

where ω2
0 = g/l. Clearly for max(φ) � 1, (3.1) reduces to the equation for

simple harmonic motion with natural frequency ω0. We will refer to ω0 as the
small angle frequency, and to the associated libration period the small angle
libration period. Figure 3.2(a) plots φ against time, the latter measured in
units of small angle libration periods for φ(0) = 0 and various values of φ̇(0),
while Fig. 3.1(b) plots solutions in phase-space, that is, φ̇ against φ. Solutions
that oscillate between fixed values of φ < π are referred to as libratory and
those for which φ is unbounded are called circulatory. These two kinds of
motion are separated in phase space by the separatrix, the two branches of
which are indicated by the dashed curves in each panel. Clearly, the libration
period increases from 2π/ω0 for small maximum φ ≡ φm to infinity for φm =
π. Note in particular the so-called hyperbolic fixed points on the separatrix
(φ, φ̇) = (±π, 0) in panel (b): these play a vital role in unstable triples as we
will demonstrate.
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Fig. 3.2. Libration versus circulation of a pendulum. Corresponding curves in (a)
and (b) have the same colour. The dashed curves correspond to the separatrix;
after starting at φ(0) = 0 the system takes an infinite amount of time to reach the
unstable equilibrium points (φ, φ̇) = (±π, 0) (also known as hyperbolic fixed points)

Equation (3.1) has an integral of the motion, which we refer to as the
pendulum energy:

E =
1
2
φ̇2 − ω2

0(cosφ+ 1), (3.2)

where we have chosen the zero of E to correspond to the separatrix, that is,
the curve which passes through (φ, φ̇) = (π, 0). The equation for the separa-
trix is therefore

φ̇ = ±2ω0 cos(φ/2). (3.3)

For systems with E < 0, the libration period, Tlib, is given by

Tlib =
∫ Tlib

0

dt = 4
∫ φm

0

dφ
φ̇

=
2
√

2
ω0

∫ φm

0

dφ√
cosφ− cosφm

, (3.4)

where again φm is the maximum value of φ, therefore corresponding to φ̇ = 0.
Note that for φm � 1, Tlib � 2π/ω0.

For systems with E > 0, the circulation period, Tcirc, is given by

Tcirc = 2
∫ π

0

dφ
φ̇

= 2
∫ π

0

dφ
√
φ̇2

0 + 2ω2
0(cosφ− 1)

, (3.5)

where φ̇0 is the value of φ̇ corresponding to φ = 0. Note that for φ̇0 � 2ω0,
Tcirc � 2π/φ̇0.

The libration and circulation frequencies, ωlib ≡ 2π/Tlib and ωcirc ≡
2π/Tcirc, respectively, are plotted in Fig. 3.3. Note the steep dependence of
ωlib on φm near φm = π and ωcirc on φ̇0 near φ̇0 = 0. As we will now demon-
strate, it is this steep dependence which is responsible for chaos in weakly
coupled non-linear systems.
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Fig. 3.3. Amplitude dependence of pendulum libration and circulation frequencies.
Note the extremely steep dependence of ωlib on φm near π – one of the secrets to
understanding chaos in weakly interacting systems. The dashed curves correspond
to (a) the small angle frequency and (b) φ̇0 = 2ω0

3.3.2 Linear Versus Non-Linear Resonance

Consider a simple undamped spring with natural frequency ω which is forced
at the frequency Ω. If φ is the displacement away from equilibrium, then given
the initial conditions φ(0) = φ̇(0) = 0, the solution to the equation of motion

φ̈+ ω2φ = A sin Ωt (3.6)

is

φ(t) =
A

Ω2 − ω2
[(Ω/ω) sinωt− sin Ωt] (3.7)

when Ω 	= ω, and

φ(t) =
A

2ω2
[sinωt− ωt cosωt] (3.8)

when Ω = ω. These two types of solution are plotted in Fig. 3.4(a) and (b)
respectively. In the first case, a near-resonant value of Ω = 0.9ω produces the
phenomenon called beating, where the frequency of the envelope of the solution
is |Ω − ω|. The maximum value attained is approximately (A/ω)/|Ω − ω|.
However, when Ω = ω, the envelope is given by φ(t) = ±At/2ω and the
solution grows without bound. This is linear resonance.

Unlike a simple spring whose natural oscillation frequency is indepen-
dent of the amplitude, the libration frequency of a pendulum is amplitude-
dependent except when the libration angle is small. Consider a pendulum
which is forced at a constant frequency Ω, and let its small angle frequency be
ω0. Its equation of motion is almost identical to (3.6) except that φ is replaced
by sinφ:

φ̈+ ω2
0 sinφ = A sin Ωt. (3.9)
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Fig. 3.4. Forced linear spring vs forced pendulum. Linear spring: (a) beating with
Ω <∼ ω and (b) linear resonance with Ω = ω. Pendulum: (c) and (d). Both solutions
exhibit beating but the system which is forced with a frequency less than the small-
angle frequency attains a larger amplitude because, as the amplitude increases, the
libration frequency decreases moving it closer to the forcing frequency. In contrast,
system (d) moves away from the forcing frequency from the start and therefore does
not attain as large an amplitude. For all four systems A = 0.1 and φ(0) = φ̇(0) = 0

Now there is no closed-form solution; in fact, this differential equation admits
chaotic solutions. In order to understand how such solutions arise (and ulti-
mately, to understand why the three-body problem admits chaotic solutions),
consider solutions to (3.9) with the same initial conditions as for the forced
spring; these are shown in Fig. 3.4(c) and (d). Both solutions exhibit beating
but the system which is forced with a frequency less than the small angle
frequency attains a larger amplitude because, as the amplitude increases, the
libration frequency decreases moving it closer to the forcing frequency (see
Fig. 3.3). In contrast, system (b) moves away from the forcing frequency from
the beginning.

What happens if A is increased in (3.9)? While doing this merely scales
the amplitude for a linear spring, the response is quite different for a forced
pendulum because the response frequency actually depends on the amplitude.
Figure 3.5 shows solutions for various values of A ≡ A/ω2

0 for φ(0) = φ̇(0) = 0
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Fig. 3.5. Strong forcing of a pendulum. All systems have Ω = 0.9 ω0 and φ(0) =
φ̇(0) = 0, except for the dashed curves for which φ(0) = 10−6. (a) A ≡ A/ω2

0 = 0.3:
libration. Here the pendulum frequency drops further below the forcing frequency
and beating is less pronounced. Note especially that the amplitude gets dangerously
close to π, that is, the separatrix. (b) A = 1.0: circulation. Safely past the separatrix,
the system is sufficiently forced to simply circulate. (c) A = 0.305 and (d) A = 1.05:
chaos. The system is forced sufficiently strongly to show a mixture of libration and
circulation. The dashed curves illustrate the sensitivity of chaotic systems to initial
conditions. In fact, both (a) and (b) are also chaotic but these systems do not come
sufficiently close to the separatrix during this time interval. Note that the values
of A in (c) and (d) are only slightly different to those in (a) and (b), respectively,
suggesting that the time at which obvious divergence of nearby trajectories takes
place is statistical. Note also that different scales have been used for each panel

and Ω = 0.9ω0. In (a), A = 0.3, the motion remains libratory over this time
interval (E < 0), but the amplitude comes close to π (maximum 2.6). In (b),
A = 1.0 and the stronger forcing allows the system to be completely circu-
latory with E > 0 at all times shown. Panels (c) and (d) exhibit sensitivity
to initial conditions, a diagnostic of chaos, even though their values for A are
only slightly different to those in (a) and (b). This is demonstrated by plot-
ting trajectories with the same initial conditions except for the initial values
for φ, which differ by 10−6. Note that for longer integration times (a) and



3 Three-Body Stability 67

(b) also display similar sensitivity to initial conditions, including a mixture of
libration and circulation.

3.3.3 The Butterfly Effect Explained

When a system is near the separatrix, a small difference in φ can correspond
to at least an order of magnitude difference in the pendulum frequency ωlib

or ωcirc (see Fig. 3.3). Since the libration amplitude depends sensitively on
the current value of ωlib relative to the forcing frequency [for example, com-
pare Fig. 3.4(c) and (d)], such differences can eventually lead to a significant
divergence of initially nearby solutions as long as the system is not periodic
or quasi-periodic (see below).5 A system that is sufficiently strongly forced
may even cross the separatrix and begin to circulate; this almost never hap-
pens at the same time as a neighbouring trajectory because of the differences
in their pendulum frequencies at the time. The situation is indicated by ar-
rows in Fig. 3.5(c) and (d). This behaviour is the essence of chaos in weakly
interacting systems.

Let us consider the situation more closely. Given the values of φ and φ̇
at any time t, one can define the instantaneous (or osculating) pendulum
frequency ω to be such that

ω(t) =
{

ωlib, E < 0
−ωcirc, E > 0, (3.10)

where again, ωlib = 2π/Tlib and ωcirc = 2π/Tcirc with Tlib and Tcirc defined in
(3.4) and (3.5). These latter quantities depend on knowing φm and φ̇0, that is,
respectively, φ at φ̇ = 0 for a librating system and φ̇ at φ = 0 for a circulating
system. The instantaneous values of these can be defined via the pendulum
energy E (which is now not conserved). Thus from (3.2),

φ̇2 − ω2
0(1 + cosφ) = −ω2

0(1 + cosφm) (3.11)

and

φ̇2 − ω2
0(1 + cosφ) = φ̇2

0 − 2ω2
0 . (3.12)

Note that defining the pendulum frequency to be negative when E > 0 simply
ensures that dω/dt is continuous through ω = 0, that is, for the purpose of
graphical representation there is a smooth transition from libration to circu-
lation. More importantly, it allows for a meaningful measure of the “distance”
between neighbouring trajectories (see discussion below).

Figure 3.6(b) plots ω(t) for the stable case shown in panel (a) of the same
figure for which A = 0.1, Ω = 0.9ω0. The pendulum frequency is clearly

5A system is N-fold quasi-periodic if it can be represented as the product of N
Fourier series with associated frequencies ωi, i = 1, . . . , N , such that the ωi are not
commensurate. If the ωi are commensurate, the system is periodic.
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Fig. 3.6. Exponential divergence of chaotic trajectories. Panel (a) shows the evolu-
tion of φ (in units of π) for two initially close trajectories (δφ(0) = 10−6) for A = 0.1
and Ω/ω0 = 0.9. No unstable behaviour is indicated, and this is supported by panel
(c), which plots the logarithm of the difference in the pendulum frequencies. Panel
(b) shows the evolution of the pendulum frequency ω(t) ((3.10)) for the system
with φ(0) = 0. Points are plotted only when the forcing is zero, that is, when the
pendulum is “free”. Since φ is quasi-periodic (in fact for this example, it is actually
periodic because ω0 and Ω are commensurate), the pendulum frequencies come in
and out of step over time and their differences, therefore, never build up. Panels (d),
(e) and (f) show the evolution of these quantities for the chaotic system A = 0.2 and
Ω/ω0 = 0.9. The initially close trajectories diverge strongly around t/2π = 30, even
though the system appears to be stable before then. However, it is clearly not even
quasi-periodic, and panel (f) reveals that the trajectories are in fact exponentially
diverging because |φ| comes close enough to π for ω1 to be significantly different to
ω2 at those times. In particular, notice how individual peaks in panel (f) correspond
to minimum values of |ω(t)|. The forcing is strong enough to allow the system to
cross the separatrix and occasionally circulate. Since φ is not periodic, differences
in ω accumulate and remain O(|ω|)
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periodic, with minima corresponding to maximum forcing (notice in (a) how
the response “stretches” at maximum amplitude; this is seen in more detail
in Fig. 3.4(c)). Panel (c) plots the logarithm of the difference between the
pendulum frequencies, ω1 and ω2, of two initially close systems for which the
difference in φ(0) is again 10−6 ≡ ε. The difference remains of the order or
less than ε for the time shown here, and for longer times grows linearly before
turning over when |ω1 − ω2| � 0.01. This behaviour is common to quasi-
periodic (and periodic) systems for which accumulation of differences in ω is
limited to how out of phase the two systems become.

In contrast, the right-hand panels (d), (e) and (f) show φ(t), ω(t) and
log |ω1 −ω2| for the chaotic system A = 0.2 and Ω = 0.9ω0. Unlike the stable
system, this one is not periodic or quasi-periodic, and the consequence is that
differences in ω do accumulate. These differences are a maximum when |ω(t)|
is a minimum because of its steep dependence on φ0 as φ0 → π, and this can
be seen if one compares panels (e) and (f). Eventually, |ω1 − ω2| = O(|ω|)
when one of the systems is sufficiently forced to start circulating. Note that
system 1 first circulates at t/2π � 84.

The slope of the curve in panel (f) indicates the time-scale τ on which
exponential trajectory divergence takes place. This is normally associated with
the largest Lyapunov exponent λ, which is related to τ such that λ ∼ 1/τ .

The following questions arise: how strong does the forcing have to be (how
large should A be) and/or how close should the forcing frequency Ω be to ω0

in order that the system is not exclusively libratory? Are all systems which
do not circulate quasi-periodic or periodic (i.e. do all chaotic systems involve
circulation)? These and other related questions have been studied extensively
in the context of conservative Hamiltonian systems, of which the general three-
body problem is an example. In fact, the three-body problem (or simplified
versions of it) motivated Poincaré to invent the modern theory of dynamical
systems and chaos (Barrow-Green 1997) and led to the famous Kolmogorov–
Arnol’d–Moser or KAM theory of weakly interacting Hamiltonian systems
(see below).

3.3.4 Pendulums, the Three-Body Problem
and Resonance Overlap

The previous examples demonstrate how springs and pendulums respond to
fixed forcing. How are these related to the three-body problem? Most three-
body configurations can be regarded as being composed of an “inner binary”
and an “outer binary”, the latter being composed of the inner binary and the
third body; this is referred to as a three-body hierarchy (see Fig. 3.8). When
a system is stable (or at least, close to stable), these two binaries constitute
a weakly interacting conservative system with each binary forcing the other.

Figure 3.7 shows the evolution of the semi-major axis, ai, of the inner
binary of (a) a stable triple and (b) an unstable triple. The behaviour of
the stable system is very similar to the forced pendulum in Figs. 3.4(c) and
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Fig. 3.7. Evolution of the semi-major axis, ai, of the inner binary of a stable triple
(a) and an unstable triple (b). The initial conditions are such that for both (a)
and (b) the ratio of the outer periastron distance to the inner semi-major axis is
3.6 and the inner binary is circular, while the outer eccentricity is 0.3 and 0.5 for
(a) and (b), respectively. In (b) we also show the evolution of an almost identical
configuration for which the initial inner eccentricities differ by 10−6

3.6(a); here the forcing is provided by the third body, with outer periastron
passage occurring at 0.5 phase. The chaotic system in (b) is reminiscent of
Fig. 3.6(d), in this case with a mixture of oscillation between two fixed values
(“libration”) and approximately steady increase or decrease (“circulation”)
of ai. In fact, the inner and outer orbits exchange energy via an interaction
potential or disturbing function, which can be written as an infinite series of
resonance angles, each a linear combination of all the angles in the system
and each obeying a forced pendulum equation. The forcing of each individual
“pendulum” is provided by all the other “pendulums”, and when the system
is stable the forcing is negligible (in fact, exponentially small). For almost all
stable systems the pendulum motions are circulatory with exponentially small
amplitudes; however, some stable systems exist in a resonant state in which
case one resonance angle librates.6 In order for stability to be maintained,
the forcing of such an angle must remain small in the sense discussed in
the previous section. When the forcing is such that the pendulum libration
amplitude (i.e. the single resonance angle that is librating) comes close to π,
the system is unstable, again in the same sense as discussed in the previous
section. However, here the forcing is provided by another “pendulum” with
almost the same frequency, i.e. by another resonance angle. In order for the
forcing to be sufficiently strong, it turns out that such a resonance angle (in
general) must also be librating and we have the situation where the system
exists in two “neighbouring” resonant states: this is referred to as resonance
overlap. Thus the diagnostic for instability is simply that two neighbouring
resonances be librating; this is the resonance overlap stability criterion.

6In fact, the stable resonant state actually consists of a superposition of resonance
angles (M2), but this is usually only important for extreme mass-ratio systems that
have stable low-order resonances.
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The reader is referred to the original paper by Walker & Ford (1969) in
which this idea is discussed in a clear and straightforward way, while Chirikov
(1979) provides a deeper and more extensive analysis. The concept of res-
onance in weakly interacting conservative systems originates in a theorem
proposed and partially proved by Kolmogorov (1954), itself inspired by the
work of Poincaré (1993). This theorem was fully proved by Arnol’d (1963)
and independently by Moser (1962). The three papers constitute the famous
Kolmogorov–Arnol’d–Moser, or KAM, theorem, which would provide a proof
that “stable” triple systems are formally stable for all time were it not for
the fact that one of the assumptions made in the proof of the theorem is
violated! The aim of the KAM theorem is to show that if one perturbs an
integrable Hamiltonian system sufficiently weakly,7 then some of the KAM
tori on which solutions were originally quasi-periodic will be only slightly dis-
torted and quasi-periodicity will be preserved. Although not a conservative
Hamiltonian system, we see this behaviour in going from the forced spring in
Fig. 3.4(a) to the forced pendulum in panel (c) of the same figure; a pendulum
can be regarded as a linear spring with a non-linear perturbation. However,
if the perturbation is too strong, quasi-periodicity is lost and the motion be-
comes unpredictable. If the KAM theorem applied to the three-body problem
it would prove that a large subset of configurations exists whose members re-
main stable for all time (because they are stuck on KAM tori). But the catch
is that one requires the characteristic frequencies of the decoupled system to
be non-commensurate and this is not the case because the apsidal motion and
precession frequencies are equal (in fact, equal to zero).

So a formal proof of the ultimate stability of general three-body configura-
tions remains elusive, although it can be proved in some restricted cases, for
example, when the eccentricities and inclinations are small so that the secular
theory of Laplace applies and can be used as the underlying “unperturbed”
system; see Arnol’d (1978) p. 414. We must therefore (at least for now) be
content with our observation that apparently stable systems seem to mimic
quasi-periodic systems for which the KAM theorem does apply, and proceed
to use the tools of the theorem (in particular, the resonance overlap stability
criterion) to predict, albeit approximately, the boundary between stable and
unstable behaviour.

7An integrable Hamiltonian system that is a function of N coordinate and N
momentum variables is one which has N integrals of the motion. For such systems
one can then find a coordinate transformation such that the new momenta are the
integrals themselves and the new coordinates qi, i = 1, . . . , N are linear functions of
time, qi(t) = ωit + Ci, where the ωi are the characteristic frequencies of the system
and the Ci are constants. If the ωi are not commensurate, that is, there exists no
integers ki such that

∑
kiωi = 0, the solutions are restricted to and densely cover

so-called KAM tori and the motion is quasi-periodic. If the ωi are commensurate,
the motion is periodic.
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3.4 The Three-Body Problem

The three-body problem is famously easy to formulate and impossible to
solve – at least analytically. Newton is said to have suffered from sleeplessness
and headaches trying to find closed-form solutions after having had such an
easy time with the two-body problem. After many attempts by the best math-
ematicians of their time, Poincaré noticed that perturbation techniques un-
avoidably involved singularities associated with resonances and concluded that
the three-body problem has solutions that cannot be represented by conver-
gent series.

In order to appreciate fully the dynamics of the three-body problem, we
begin by reviewing some aspects of the two-body problem, in particular, its
integrals of the motion. These express various symmetries inherent in the
equations of motion, one (sometimes more) of which survives when a third
body is added and the system is stable (the total energy and linear and angular
momenta are still conserved).

3.4.1 Symmetries in the Two-Body Problem

The equations of motion of two bodies with masses m1 and m2 acting under
the influence of each other’s gravity are

m1r̈1 =
Gm1m2

r212
r̂12 (3.13)

m2r̈2 = −Gm1m2

r212
r̂12, (3.14)

where r12 = r2 − r1. Equations (3.13) and (3.14) constitute a twelfth-order
system of differential equations. However, it has eight independent integrals of
the motion and, as is well known, this restricts the motion to a simple curve in
space as we now show. Three of the integrals of motion are the components of
the total linear momentum P, which one obtains by adding (3.13) and (3.14)
together and integrating, that is,

m1ṙ1 +m2ṙ2 ≡ P. (3.15)

Dividing through by the masses, subtracting (3.13) from (3.14) and defining
r to be the position vector of m2 relative to m1, that is, r ≡ r12, we reduce
the system to sixth order:

r̈ = −Gm12

r2
r̂, (3.16)

where r = |r| and m12 = m1 +m2. Taking the cross product of each side with
μr and integrating we get another three integrals of the motion; these are the
components of the total angular momentum J:
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μr × ṙ ≡ J, (3.17)

where μ = m1m2/m12 is the reduced mass of the system. A seventh integral
of the motion is the total energy; this is obtained by taking the dot product
of (3.16) with μṙ and integrating:

1
2
μṙ · ṙ − Gm1m2

r
≡ E, (3.18)

where we have used the chain rule

d
dt

=
∂

∂t
+ ṙ · ∂

∂r
, (3.19)

with ∂/∂r ≡ ∇. The seven integrals reflect natural symmetries of isolated
conservative mechanical systems: the conservation of energy and linear mo-
mentum reflect the fact that the equations of motion are independent of the
origin of time and space, respectively, while the conservation of angular mo-
mentum reflects the fact that the solution is independent of the orientation
of the system. For all these symmetries, there is no external landmark which
could be used to distinguish one system from another under such transforma-
tions.

What symmetry does the eighth integral correspond to? It is well known
that solutions to (3.13) and (3.14) are conic sections. In particular, these
curves are fixed in space, that is, their orientation is invariant, a fact peculiar
to the two-body problem (see Goldstein (1980) p. 104 for a discussion of this).
This is normally expressed as the invariance of the Runge–Lenz vector (also
called the Laplace vector), a vector which points in the direction of periastron
and is defined by

e = ṙ × (r × ṙ)/Gm12 − r̂, (3.20)

and whose magnitude is the orbital eccentricity e. But this appears to add
three extra integrals; in fact one can show that only one is independent of the
other seven (Goldstein 1980).

The two-body problem has six degrees of freedom and hence one only needs
six integrals of the motion in order that the system be completely integrable
(in the sense discussed in the footnote on p. 71). The fact that we have eight
restricts the motion to closed curves in the frame of reference of the centre
of mass of the system. Solution curves are the conic sections (see Goldstein
(1980) for a method of solution).

3.4.2 The Three-Body Problem

The equations of motion of three bodies with masses m1, m2 and m3 acting
under the influence of each other’s gravity are
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m1r̈1 =
Gm1m2

r212
r̂12 +

Gm1m3

r213
r̂13 (3.21)

m2r̈2 = −Gm1m2

r212
r̂12 +

Gm2m3

r223
r̂23 (3.22)

m3r̈3 = −Gm1m3

r213
r̂13 −

Gm2m3

r223
r̂23, (3.23)

where the vectors ri, i = 1, 2, 3 are referred to the centre of mass of the
system (see Fig. 3.8), and rij = rj − ri with rij = |rij |. The differential
equations (3.21), (3.22) and (3.23) constitute an 18th-order system. While it
again yields the seven integrals of total energy, linear momentum and angular
momentum, there is no analogue of the Runge–Lenz integral. Thus we are two
integrals short of a totally integrable system. This fact results in the possibility
of the system admitting chaotic solutions, that is, solutions that are exquisitely
sensitive to the initial conditions and are hence unpredictable. In fact for some
systems with negative total energy, it allows for infinite separation of one body
from the other pair. These are systems referred to as Lagrange unstable, which
in general do not rely on the close approach of two of the bodies (such systems
are referred to as Hill unstable).

We thus ask the general question: given a particular three-body configu-
ration, how can we determine whether or not it is (Lagrange) stable for all
time? As discussed in Sect. 3.3.4, there is no rigorous answer to this ques-
tion. However, there is no doubt that there exists a sharp (albeit fractal-like)
boundary in parameter space between unstable systems, which decay on a
relatively short time-scale and those which appear to remain intact (are sta-
ble) indefinitely. It is this boundary that is approximately delineated in this
chapter using the so-called resonance overlap criterion, which itself involves
identifying internal resonances in the system. In order to do this, we begin by
introducing Jacobi or hierarchical coordinates r and R, which together with

R
C123

r3

C12

m1

m2

m3

r1

r2

r

Fig. 3.8. Centre of mass coordinates ri and Jacobi coordinates r and R. C12 is the
centre of mass of bodies 1 and 2 while C123 is the centre of mass of the whole system
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conservation of linear momentum, replace the centre-of-mass coordinates r1,
r2 and r3 (see Fig. 3.8).

3.4.3 Equations of Motion in Jacobi Coordinates

Intuitively, it seems reasonable that three-body configurations are more likely
to be stable the further one of the bodies (let us take this to be body 3) is
separated from the other two. In fact, a very distant third body will orbit
the other two as if they were almost a single body. Thus we can conceive
of an “inner binary” composed of bodies 1 and 2, and an “outer binary”
composed of bodies (1+2) and body 3. Jacobi coordinates conveniently express
this arrangement. Just as for the two-body problem, r is defined to be the
position vector of m2 relative to m1, that is, r = r2 − r1, while R is the
position vector of m3 relative to the centre of mass of m1 and m2. In fact,
it turns out that R passes through the centre of mass of the system and as
such is in the same direction as r3 with R = (m123/m12) r3 (Fig. 3.8), where
m123 = m1 +m2 +m3. Using these definitions, we can reduce the 18th-order
system (3.21), (3.22) and (3.23) to the 12th-order system

μir̈ +
Gm1m2

r2
r̂ =

∂R
∂r

(3.24)

μoR̈ +
Gm12m3

R2
R̂ =

∂R
∂R

, (3.25)

where R = |R|, μi = m1m2/m12 and μo = m12m3/m123 are the reduced
masses associated with the inner and outer orbits, respectively, and

R = −Gm12m3

R
+

Gm2m3

|R − α1r|
+

Gm1m3

|R + α2r|
(3.26)

is the disturbing function8 with αi = mi/m12, i = 1, 2. As r/R → 0 and/or
m3/m12 → 0, R → 0 and the inner and outer orbits decouple. In fact, the
disturbing function contains all the information about how the inner and
outer orbits exchange energy and angular momentum. Since we are interested
in determining which configurations are unstable, that is, which allow the
escape to infinity of one of the bodies, and this necessarily generally involves
a substantial exchange of energy between the orbits, our focus for the rest of
this chapter will be on the disturbing function: it contains all the secrets of
the three-body problem!

Before we proceed, we need to define the orbital elements of the inner and
outer binaries in terms of which the stability boundary will be expressed. Using

8Note that, as a quantity introduced to study the restricted three-body problem,
the disturbing function has historically been defined to have units of energy per unit
mass. Here it has units of energy.
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subscripts i and o to denote the inner and outer orbits respectively,9 these are
the semi-major axes ai and ao, the eccentricities ei and eo, the orientation
angles ωi, Ωi, Ii and ωo, Ωo, Io, which are respectively the arguments of
periastron, the longitudes of the ascending node and the inclinations (see
Fig. 3.1), and the phase angles fi, Mi, λi, εi and fo, Mo, λo, εo, which are
respectively the true anomaly, the mean anomaly, the mean longitude and
the mean longitude at epoch (Murray & Dermott 2000). Note that longitude
angles are measured with respect to a fixed direction (which here we take
to be the i direction in Figs. 3.1 and 3.9); we will use longitudes when we
construct the resonance angle in the next section. Thus rather than ωi,o we
will use the longitudes of periastron, defined to be �i = ωi + Ωi and similarly
for �o. From Fig. 3.1 we see that for inclined orbits this is a dog-leg angle!
The phase angles fi,o, Mi,o and λi,o ≡ Mi,o + �i,o are used to express the
angular positions of the bodies in the two-body orbit, the choice of which
depends on the application (there are at least another two phase angles in
use: the true longitude ≡ f + � and eccentric anomaly, neither of which we
will use here). The mean longitude at epoch is the mean longitude at t = 0
((3.45)). See Murray & Dermott (2000) for a more detailed discussion of the
various orbital elements.

3.4.4 Spherical Harmonic Expansions

Since our aim is to determine which configurations are stable, it is useful to
write the disturbing function in terms of the orbital elements of the inner and
outer binaries. To do this we somehow need to separate information about
the inner orbit from that of the outer orbit. The form of the second and third
terms in (3.26) suggest using a Legendre expansion:

1
|b − a| =

∞∑

l=0

(
al

bl+1

)

Pl(cos γ), (3.27)

where b = |b|, a = |a| with a < b, Pl(cos γ) is a Legendre polynomial of degree
l and cos γ = â · b̂. However, for us, this involves the angle between r and
R: information about the two orbits is still “tangled”. We can go one step
further and use something called the addition theorem (Jackson 1975), which
expresses a Legendre polynomial of order l in terms of spherical harmonics,
Ylm, whose arguments are the spherical polar coordinate angles of the vectors
r and R, both referred to a fixed coordinate system (Fig. 3.9):

Pl(cos γ) =
4π

2l + 1

l∑

m=−l

Ylm(θ, ϕ)Y ∗
lm(Θ,Ψ). (3.28)

9When no subscript is used, the elements refer to any (or either) two-body orbit.
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Fig. 3.9. Spherical polar angles associated with r (θ, ϕ) and R (Θ, Ψ). The origin
corresponds to the centre of mass of m1 and m2, C12

Spherical harmonics are defined in terms of associated Legendre functions,
Pm

l (cos θ), and trigonometric functions (see Jackson (1975) for an extensive
discussion of their properties):

Ylm(θ, ϕ) =

√
2l + 1

4π
(l −m)!
(l +m)!

Pm
l (cos θ) eimϕ, (3.29)

where the numerical coefficient is chosen so that the spherical harmonics have
a particularly simple orthogonality relation:

∫ 2π

0

∫ π

0

Ylm(θ, ϕ)Y ∗
l′m′(θ, ϕ) sin θ dθ dϕ = δll′δmm′ . (3.30)

Spherical harmonics are especially important in quantum mechanics. Com-
bining (3.27) and (3.28), the disturbing function (3.26) becomes

R = Gμim3

∞∑

l=2

l∑

m=−l

(
4π

2l + 1

)

Ml

(
rl

Rl+1

)

Ylm(θ, ϕ)Y ∗
lm(Θ, ψ), (3.31)

where

Ml =
ml−1

1 + (−1)lml−1
2

ml−1
12

. (3.32)

Notice how the sum over l begins at l = 2 and not l = 0; this is because the
l = 0 term is cancelled by the first term in (3.26), while the l = 1 term (the
dipole term) is zero because M1 = 0. Thus the leading term is proportional
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to r2/R3 so that R provides a perturbation to the inner and outer orbits for
small r/R. The l = 2 contribution is called the quadrupole term while the
l = 3 contribution is called the octopole term. Notice also that M2 = 1, and
that when m1 = m2, Ml = 0 for l odd.

Since the focus of classical treatments of the three-body problem has been
the Solar System in which mass ratios, eccentricities and inclinations are gen-
erally small, these elements have been used as expansion parameters. The
so-called literal expansion (Murray & Dermott 2000) involves Laplace coef-
ficients, which are functions of the ratio of semimajor axes, and is valid for
orbits which cross, an example of which is the Neptune–Pluto pair. Apart from
being restricted to small eccentricities and inclinations, it also assumes that
one of the participating orbits is not affected by the presence of the third body:
this is the restricted three-body problem. The formulation presented here is,
instead, restricted by the condition r/R < 1 for the spherical harmonic ex-
pansion (3.31) to be valid. Note that it is similar to the (rather tedious to
follow) formulation of Kaula (1961); however, the latter is also based on the
restricted three-body problem.

Our aim here is to identify internal resonances so that we can apply the
resonance overlap criterion and determine stability boundaries. The two most
fundamental frequencies in the system are the inner and outer orbital frequen-
cies, νi and νo, respectively, and these are the only frequencies present when
the orbits are not coupled. For example, recall that the orientation of a two-
body orbit remains fixed in space, and this is expressed by the constancy of
the Runge–Lenz vector. However, when a third body is introduced, this sym-
metry is broken and the original orbit rotates in space, in a manner similar to
a spinning top acting under the applied torque of the Earth. As discussed in
the Introduction, the presence of a third body introduces four new frequen-
cies (apsidal advance and precession of the inner and outer orbits), which are
usually much slower than the orbital frequencies. Resonances will, in general,
involve linear combinations of all six frequencies. Our next task, then, is to
express the disturbing function in terms of six angles associated with these
frequencies, and as discussed earlier, these are chosen to be longitudes. The
mean longitudes λi,o are associated with νi,o while the angles associated with
apsidal motion and precession are the longitudes of periastron, �i,o, and the
longitudes of the ascending node, Ωi,o, respectively.

For clarity and simplicity, the rest of the chapter will assume coplanar
motion; see M1a and M3 for the general analysis involving inclined systems.
Taking the plane of the orbits to be the x–y plane, the polar angles are then
θ = Θ = π/2 so that from (3.29),

Ylm(π/2, ϕ) =

√
2l + 1

4π
(l −m)!
(l +m)!

Pm
l (0) eimϕ ≡

√
2l + 1

4π
clm eimϕ (3.33)

and similarly for Ylm(π/2,Ψ). Values for c2lm for some values of l and m are
listed in Table 3.1.
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Table 3.1. Spherical harmonic constants

l m c2
lm

2 2 3/8
0 1/4

3 3 5/16
1 3/16

Referring to Figs. 3.1 and 3.9 and recalling that we are working in the plane
(I = 0), we have ϕ = fi + ωi + Ωi = fi + �i and Ψ = fo + �o. Substituting
these together with (3.33) into (3.31) gives

R = Gμim3

∞∑

l=2

l∑

m=−l

c2lm Ml

(
rleimfi

)
(
e−imfo

Rl+1

)

eim(	i−	o), (3.34)

where we have collected together plane polar variables associated with each
orbit in the two pairs of large brackets. For uncoupled orbits these are pe-
riodic functions with frequencies νi and νo. Since we are interested in weak
interaction between the orbits, it makes sense to expand these expressions in
Fourier series in these frequencies. Using the familiar two-body expressions

r =
ai(1 − e2i )

1 + ei cos fi
and R =

ao(1 − e2o)
1 + eo cos fo

, (3.35)

we have
(
r

ai

)l

eimfi =
∞∑

n′=−∞
s
(lm)
n′ (ei) ein′Mi (3.36)

and

e−imfo

(R/ao)l+1
=

∞∑

n=−∞
F (lm)

n (eo) e−inMo , (3.37)

where

s
(lm)
n′ (ei) =

1
2π

∫ π

−π

(
r

ai

)l

eimfie−in′Mi dMi (3.38)

and

F (lm)
n (eo) =

1
2π

∫ π

−π

e−imfo

(R/ao)l+1
einMo dMo. (3.39)

Note that the mean anomalies are related to the orbital frequencies by

Mi(t) = νit+Mi(0) and Mo(t) = νot+Mo(0). (3.40)
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Fig. 3.10. Fourier coefficients s
(lm)

n′ (ei) for various values of l, m and n′ =
1, 2, . . . , 10(= n in figure). Dashed curves correspond to n′ = m. The most impor-

tant coefficient for the stability analysis of similar-mass systems is s
(22)
1 (ei) (shown

in red (grey); note that it is negative for all values of ei)

The real eccentricity-dependent Fourier coefficients s(lm)
n′ (ei) and f

(lm)
n (eo) =

(1 − eo)l+1F
(lm)
n (eo) are plotted in Figs. 3.10 and 3.11 for some values of l,

m, n and n′. In Sect. 3.4.7 we present approximations to the functions used
in our stability analysis. Substituting (3.36) and (3.37) into the disturbing
function (3.34) gives

R = Gμim3

∞∑

l=2

l∑

m=−l,2

∞∑

n′=−∞

∞∑

n=−∞
c2lmMl

(
al

i

al+1
o

)

s
(lm)
n′ (ei)F (lm)

n (eo)eiφmnn′

= 2Gμim3

∑

L

ζmc
2
lm Ml

(
al

i

al+1
o

)

s
(lm)
n′ (ei)F (lm)

n (eo) cos (φmnn′) , (3.41)

where

φmnn′ = n′Mi − nMo +m(�i −�o)
= n′λi − nλo + (m− n′)�i − (m− n)�o (3.42)

is called a resonance angle. Here ζm = 1/2 if m = 0 and is 1 otherwise, and
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Fig. 3.11. Fourier coefficients f
(lm)
n (ei) = (1 − eo)

l+1F
(lm)
n for various values of l,

m and n = 2, . . . , 10. Dashed curves correspond to n = m. The most important
coefficients for the stability analysis of similar-mass systems are f

(22)
n

∑

L

≡
∞∑

l=2

l∑

m=mmin,2

∞∑

n′=−∞

∞∑

n=−∞
, (3.43)

where the sum over m is in steps of two for coplanar systems (M1a) and
mmin = 0 or 1 if l is even or odd, respectively.

We now have the disturbing function expressed in terms of all the relevant
orbital elements including the four angles λi, λo, �i and �o, which appear in
linear combination in the resonance angle (for coplanar systems the ascending
node longitudes do not appear explicitly).

3.4.5 Energy Transfer Between Orbits

The defining characteristic of (most) stable hierarchical systems is that
(essentially) no net energy is exchanged between the orbits over one outer
orbital period. The usual way to show this is via orbit-averaging over the in-
ner orbit. This involves a time-average over one entire orbit, assuming that all
the orbital variables except the inner orbital phase remain constant on this
short time-scale. The form of (3.41) makes this extremely easy to perform;
but first we need an expression for the rate of change of the orbital energy.
The simplest way to obtain such an expression is to use Lagrange’s planetary
equation for the rate of change of the semi-major axis.
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Lagrange’s Planetary Equations

Lagrange’s planetary equations express the rates of change of all the elements
of a two-body orbit which is being perturbed by some external potential.
No assumption is made about the smallness of mass ratios (or any other
parameters) so that it is perfectly well applicable to the general three-body
problem, the results of which are meaningful as long as the inner and outer
orbits retain their identities. The derivation of these equations can be found
in Brouwer & Clements (1961) and is based on the method of variation of
parameters. The parameters in this case are the orbital element which remain
constant when the orbit is unperturbed, that is, e, a,�, Ω, I and ε = M(0)+�.
The Lagrange equation relevant to us here is that for the rate of change of
the semi-major axis. For the inner and outer orbits of a triple this is

dai

dt
=

2
μiνiai

∂R
∂εi

and
dao

dt
=

2
μoνoao

∂R
∂εo

, (3.44)

respectively, where R is given by (3.41) (recall that our disturbing function
has dimensions of energy).

Now the usual definition of the mean longitude is

λ = M +� = νt+M(0) +� = νt+ ε. (3.45)

But this assumes that the orbital frequency (and hence the semi-major axis by
Kepler’s law, and also the orbital energy) is constant, something we certainly
do not wish to assume once we consider unstable systems. A more general
definition is

λ =
∫ t

0

ν(t′) dt′ + ε∗, (3.46)

where ε∗ is a generalization of ε, which takes into account the variation of ν
(Brouwer & Clements (1961), p. 286, and Murray & Dermott (2000), p. 252; we
do not need the precise definition here). It turns out that, using this definition
of λ, one can replace εi and εo with λi and λo in (3.44) so that the rates of
change of the semi-major axes become

dai

dt
=

2
μiνiai

∂R
∂λi

and
dao

dt
=

2
μoνoao

∂R
∂λo

. (3.47)

Writing the inner orbital energy, Ei, in terms of inner semimajor axis, Ei =
−Gm1m2/2ai, the rate of change of Ei is then

1
Ei

dEi

dt
= − 1

ai

dai

dt

= 4νi

(
m3

m12

)∑

L

n′ζmc
2
lmMl

(
ai

ao

)l+1

s
(lm)
n′ (ei)F (lm)

n (eo) sin (φmnn′)

≡
∑

L

n′ Clmnn′ sin(φmnn′). (3.48)
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Performing a time-average over the inner orbit assuming all elements except
λi are constant (including ai, i.e., putting λi = νit+ εi) gives

〈
1
Ei

dEi

dt

〉

=
∑

L

n′ Clmnn′

Ti

∫ Ti

0

sinφmnn′dt

=
∑

L

n′ Clmnn′ sin (φmnn′) δn′0 = 0, (3.49)

where Ti = 2π/νi is the outer orbital period. A simpler way to look at this is
to ask for the contributions to (3.48) which are not rapidly varying (i.e. terms
which do not depend on λi and λo), that is, to retain only the “secular” (slowly
varying) terms by putting n′ = n = 0. This automatically gives <Ėi/Ei>= 0
due to the factor n′ in (3.48). This simple approach also yields the secular rates
of change of the other orbital elements via the Lagrange equations (M3).

Resonance

How do we reconcile (3.49) with the fact that significant energy transfer is
needed for escape of one body to occur? It seems that the assumption that
elements other than λi hardly change over an inner orbital period must be
wrong in such cases. In fact, it is not so much that the other elements do
not change much, but rather that in some circumstances certain combinations
of angles vary slowly, and this can result in significant energy transfer. For
example, imagine a system for which the outer orbital period is almost exactly
two times the inner orbital period, that is,

νi − 2νo � 0. (3.50)

Noting from (3.42) and (3.46) that

φ̇mnn′ = n′νi − nνo + [n′ε̇i − nε̇o + (m− n′)�̇i − (m− n)�̇o]
� n′νi − nνo, (3.51)

where the frequencies in square brackets are generally much smaller than the
orbital frequencies, (3.50) is simply φ̇m21 � 0 for any m. In practice, it is
terms with m = 2 which contribute the most to energy transfer because these
involve the quadrupole l = 2 terms (note the power of ai/ao in (3.48) and
recall that the summation over l begins at 2). A system for which (3.50) holds
is referred to as resonant for obvious reasons. In fact, except for systems for
which m2,m3 � m1, e.g. star–planet–planet systems or intermediate/massive
black hole–star–star systems, the so-called 2:1 resonance is unstable because
adjacent resonances overlap and produce instability. However, there are now
several stable 2:1 planetary systems known. One example is GJ 876 (Rivera
et al. 2005) whose orbital periods are 30.34 days and 60.935 days with masses
m1 = 0.3M�, m2 = 0.62MJ and m3 = 1.93MJ , where MJ is the mass of
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Fig. 3.12. The 2:1 resonance in the GJ 876 planetary system. (a): the evolution of
the inner semi-major axis for max(νi/νo) = 2.1. The small wiggles correspond to en-
ergy exchange during periastron passage of the outer planet (two peaks per passage
corresponding to superior and inferior conjunction). (b): libration and circulation:
νi/νo ≡ σ vs the resonance angle φ221 for (from centre) σ = 2.008, 2.1 and 2.2

Jupiter. This period ratio is such that νi/νo = 2.008, that is, the system is
very close to exact resonance. In order to demonstrate clearly the resonant
variation of ai, Fig. 3.12(a) plots its evolution for a slightly larger value of σ
(σ = 2.1), while Fig. 3.12(b) plots νi/νo ≡ σ vs the resonance angle φ221 for
σ = 2.008 (the innermost set of points), σ = 2.1 (the librating set of points
forming a fuzzy circle) and σ = 2.2 (the circulating set of points). The fact
that ai varies significantly in Fig. 3.12(a) indicates that a substantial amount
of energy is exchanged between the orbits (when the inner orbit shrinks, the
outer orbit expands due to conservation of energy). Resonant orbits are also
associated with libration of one or more resonance angles. The width of a
resonance is the “distance” from exact resonance to the separatrix, calculated
at φmnn′ = 0; if this separatrix overlaps the separatrix of a neighbouring
resonance, we have instability. Thus our task is to determine the width of
resonances and to ask for what orbital parameters are these wide enough to
overlap neighbouring resonances.

Before we leave this section on energy exchange and resonance, we quote
a result from M4 which gives approximately the energy exchanged between
the inner and outer orbits over one outer orbital period (from apastron to
apastron):

ΔEi

Ei
� I2

22 + 2 ei(0) I22 sin [φ(0)] , (3.52)

where ei(0) is the inner eccentricity at t = 0 and

I22 =
9
4

(
m3

m12

)(
ai

ao

)3

E22(eo, σ), (3.53)

with an asymptotic expression for the “overlap integral”
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E22(eo, σ) = νie
−iσπ

∫ To

0

e−2ifo

(R/ao)3
eiνit dt (3.54)

� 4
√

2π
3

(1 − e2o)
3/4

e2o
σ5/2e−σξ(eo) (3.55)

(M1a). Here To is the outer orbital period and ξ(eo) = cosh−1(1/eo)−
√

1 − e2o.
Also,

φ(0) = Mi(0) + σπ + 2(�i −�o) � φ2n1(0), (3.56)

that is, φ(0) is approximately the value of the resonance angle φ2n1 when the
outer body is at apastron (see (3.42)), exact equality holding when σ = n.
The expression (3.55) includes only quadrupole l = 2, m = 2 terms and is
obtained using an asymptotic method similar to that of Heggie (1975), which
gives the energy exchanged during the flyby of a binary by a third body. Note
that limeo→0 E22 = 0 for σ > 2, is finite for σ = 2 and is not defined for σ < 2,
and that limeo→1(1 − eo)3E22 is finite.

The form of (3.55) shows that the amount of energy transferred during
one outer orbit of a bound triple is exponentially small except when σξ(eo) is
small. This is consistent with the orbit-averaging result 〈Ėi/Ei〉 = 0, and it
strongly suggests that “stable” systems are stable for all time, although as
previously discussed a proof is not yet available.

3.4.6 A Pendulum Equation for the Resonance Angle

Figure 3.12(b) illustrates how a resonance angle librates when the orbital fre-
quencies are near-commensurate. This suggests that resonance angles should
satisfy a pendulum-like equation; the ability to write down such an equation
would then give us the full machinery outlined in Sect. 3.3.1 for pendulums.
In particular, we could calculate the distance from exact resonance to the
separatrix, that is, the resonance width; recall that we need this in order to
determine when neighbouring resonances overlap and hence when a system is
unstable.

Referring to (3.1), we see the second time derivative of the resonance angle
is required. Starting from (3.51):

φ̇mnn′ = n′νi − nνo, (3.57)

where we have replaced the approximation symbol with equality, we then have

φ̈mnn′ = n′ν̇i − nν̇o. (3.58)

Relating the rates of change of the orbital frequencies to the rates of change
of the semi-major axes:

ν̇i

νi
= −3

2
ȧi

ai
and

ν̇o

νo
= −3

2
ȧo

ao
, (3.59)
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we can again make use of Lagrange’s planetary equation for the rate of change
of the semi-major axis, (3.47), together with (3.48) and its equivalent for ȧo.
Substituting these into (3.58) and assuming that the resonance is isolated (not
forced), that is, that the only significant terms in the summations are those
with the same values of m, n and n′, we get

φ̈mnn′ = −n′2ν2
oAmnn′ sin (φmnn′) , (3.60)

where

Amnn′ ≡ −6 ζm

∞∑

l=lmin,2

c2lms
(lm)
n′ (ei)F (lm)

n (eo)

·
[
M

(l)
i σ−(2l−4)/3 +M (l)

o (n/n′)2σ−2l/3
]

� −6 ζm

∞∑

l=lmin,2

c2lms
(lm)
n′ (ei)F (lm)

n (eo) (n/n′)−(2l−4)/3

·
[
M

(l)
i +M (l)

o (n/n′)2/3
]
,

(3.61)

and we have put σ � n/n′ in the last step. Here lmin = 2 if m is even and
lmin = 3 if m is odd. The dependence on the masses is solely through the
functions

M
(l)
i = Ml

(
m3

m12

)(
m12

m123

)(l+1)/3

and M (l)
o = Ml

(
m1m2

m2
12

)(
m12

m123

)l/3

.

(3.62)

Except for very low values of n corresponding to planetary-like problems, it
is usually adequate to include only the first term in the summation over l.

Comparing (3.60) with (3.1), we have that the “small angle frequency”
ω0 is n′νo|Amnn′ |1/2. When Amnn′ > 0 we have libration around zero, and
when Amnn′ < 0 we have libration around π. It turns out that for systems for
which at least two of the masses are reasonably similar (this is quantified in
Sect. 3.4.10), the dominant resonances are those with m = 2 and n′ = 1. Using
the notation introduced in M1a, these are the [n : 1](2) resonances. Referring
to Figs. 3.10 and 3.11 and recalling that we only need include l = 2 when
m = 2, we see that s(22)1 (ei) < 0 for all 0 ≤ ei ≤ 1, and that f (22)

n (eo) > 0
for 0 ≤ eo ≤ 1 so that A2n1 > 1 for all n. Thus libration is around zero for
all resonances of interest here. Putting n′ = 1 and m = 2 in (3.61), retaining
only the l = 2 term and setting φ2n1 ≡ φn and A2n1 ≡ An, the resonances of
interest to us are governed by

φ̈n = −ν2
oAn sinφn, (3.63)



3 Three-Body Stability 87

where
An = −9

2
s
(22)
1 (ei)F (22)

n (eo)
[
M

(2)
i +M (2)

o n2/3
]
, (3.64)

with

M
(2)
i =

m3

m123
and M (2)

o =
(
m1m2

m2
12

)(
m12

m123

)2/3

, (3.65)

and we have used c222 = 3/8 from Table 3.1. In Sect. 3.4.5 p. 84, we defined
the width of a resonance to be the distance from exact resonance and the
separatrix, calculated at φmnn′ = 0. Equation (3.3) gives an expression for
the separatrix so that the width of a resonance is

Δφ̇ = 2ω0 = 2νo

√
An (3.66)

for the [n : 1](2) resonances of interest here. It is usually more convenient to
define the width of a resonance in terms of the change in σ. Since

φ̇n = νi − n νo = νo(σ − n), (3.67)

we can define the width of the [n : 1](2) resonance to be

Δσn = 2
√

An. (3.68)

We can associate an “energy” En with the pendulum-like motion of a res-
onance such that En < 0 for libration and En > 0 for circulation of φn.
Following (3.2) we then have

En =
1
2
φ̇2

n − ν2
oAn(cosφn + 1). (3.69)

It is useful to define a dimensionless version of this such that En = νoEn,
that is,

En =
1
2
[δσn]2 −An(cosφn + 1), (3.70)

where δσn = σ − n is the “distance” from exact resonance corresponding to
φn. Note that δσn is a maximum when φn = 0 (for libration around φn = 0).
We will use (3.70) in a simple algorithm to determine the stability of any
given configuration (Sect. 3.4.10).

The form of (3.64) makes it relatively easy to see how resonance widths
depend on the various parameters. Before we make use of (3.68) to determine
the stability boundary, it is necessary to discuss evaluation of the eccentricity
functions s(22)1 (ei) and F

(22)
n (eo).
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3.4.7 Eccentricity Functions

Since the eccentricity functions s(22)1 (ei) and F
(22)
n (eo) are integrals with no

closed form expressions (except for n = 0: see M3), it is of interest to find
approximations. A simple Taylor expansion of the integrand of s(22)1 (ei) about
ei = 0 allows for the integral to be performed, and, if one expands up to O(e7i ),
allows for the function to be well represented for all ei ≤ 1. This procedure
gives

s
(22)
1 (ei) � −3ei +

13
8
e3i +

5
192

e5i −
227
3072

e7i . (3.71)

If εi is the difference between the exact and approximate expression, |εi| <
0.001 for ei < 0.63, |εi| < 0.01 for ei < 0.79 and |εi| < 0.1 for ei < 1.

While it is possible to find Taylor series approximations to F
(22)
n (eo), we

would need hundreds of these for a general stability algorithm since systems
with very high outer eccentricity can involve very high values of n (since
σ = νi/νo � n/n′ = n). Instead, we make use of the asymptotic expression
(3.54) to evaluate (3.39). Making the substitution Mo = νot−π in (3.54) (since
the outer orbit starts at −π, that is, Mo(0) = −π) so that νit = σ(Mo + π)
and νidt = σdMo, the integral becomes

E22(eo, σ) = σ

∫ π

−π

e−2ifo

(R/ao)3
eiσMo dMo. (3.72)

Comparing this with (3.39) we see that

F (22)
n (eo) � E22(eo, n)/2πn. (3.73)

Thus we have the beautiful result that the resonance widths are exponentially
small when σξ(eo) is small, consistent with the fact that an exponentially small
amount of energy is exchanged between the orbits in such circumstances.

3.4.8 Induced Eccentricity and Secular Effects

The expression for the resonance width, (3.68), together with (3.64) and (3.71)
suggest that systems whose inner binary is circular have zero resonance widths
(since s(22)1 (0) = 0). But this surely is not true! Figure 3.13 plots the evolution
of the inner eccentricity for an equal mass three-body system whose initial
eccentricities are ei(0) = 0 and eo(0) = 0.5, and for which (a) σ = 10 and
(b) σ = 8. Both systems start at outer apastron, and significant eccentricity
is induced when they pass through outer periastron. The formalism used to
estimate the energy transferred between orbits (see Sect. 3.4.5 and (3.52)) can
also be used to estimate the induced inner eccentricity. This is given by

ei(To) =
[
ei(0)2 − 2 ei(0) I22 sin[φ(0)] + I2

22

]1/2
, (3.74)
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Fig. 3.13. Induced inner eccentricity of a circular binary. (a): σ = 10 and (b):
σ = 8. In both cases eo = 0.5 and the system is started at outer apastron with
Mi(0) = 0 and 
i − 
o = 0. Both systems are chaotic but (a) is on the stability
boundary while (b) is deep inside the unstable region. The dashed lines correspond
to the estimated induced eccentricity ((3.74)), following the first outer periastron
passage

where ei(0) and ei(To) are the inner eccentricity at initial and final outer
apastron, and I22 and φ(0) are given by (3.53) and (3.56), respectively. The
dashed curves in Fig. 3.13 indicate these estimates.

It turns out that using ei(To) instead of ei(0) in the expression for the res-
onance width quite accurately predicts the stability boundary when octopole
effects are unimportant (see Fig. 3.15).

Octopole Variations for Coplanar Systems

For systems with m1 	= m2, secular octopole contributions to the disturbing
function (terms with n = n′ = 0) can cause the inner eccentricity to vary
considerably on time-scales of thousands of inner orbits (Murray & Dermott
2000, M3). This is especially important for close planetary systems. While
the outer eccentricity also varies, the main effect on the resonance widths
comes from the variation of s(22)1 (ei), which is a maximum at the maximum
of the octopole cycle in ei. Referring to this maximum as e(oct)

i , it is given
approximately by (Mardling 2007, M1a)

e
(oct)
i =

{
(1 + α)e(eq)

i , α ≤ 1
ei(0) + 2e(eq)

i , α > 1,
(3.75)

where α = |1 − ei(0)/e(eq)
i | and e

(eq)
i is the “equilibrium” or “fixed point”

eccentricity, which is the root of the eighth-order polynomial
∑8

n=1 anx
n in

[0,1], where the an are given by

a0 = −B2

a1 = 2AB
a2 = B2 + C2 −A2
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a3 = −2(AB + 4CD)
a4 = A2 + 3C2 + 16D2

a5 = −18CD

a6 =
9
4
C2 + 24D2

a7 = −9CD
a8 = 9D2, (3.76)

with

A =
3
4

(
m3

m12

)(
ai

ao

)3

ε−3
o

B =
15
64

(
m3

m12

)(
m1 −m2

m12

)(
ai

ao

)4

ε−5
o

C =
3
4

(
m1m2

m2
12

)(
ai

ao

)2

ε−4
o

D =
15
64

(
m1m2

m2
12

)(
m1 −m2

m12

)(
ai

ao

)3 (1 + 4e2o
eoε6o

)

, (3.77)

and εo =
√

1 − e2o. In the limit ei � 1, the equilibrium eccentricity reduces to

e
(eq)
i =

(5/4)eom3(m1 −m2)(ai/ao)2σε−1
o

|m1m2 −m12m3(ai/ao)εoσ|
. (3.78)

Note that even though (3.78) is not accurate away from the stability boundary
where ei(To) is large, it can be used to determine the boundary if ei(0) is small
because ei(To) tends to be small there in that case (see Fig. 3.13).

3.4.9 Resonance Overlap and the Stability Boundary

The stability of any given coplanar configuration depends on the values of the
eight parameters m2/m1, m3/m12, σ, ei, eo, �i − �o, Mi(0) and Mo(0). In
order to represent the stability boundary in two dimensions, we need to fix
the values of six of these and vary the other two. Here we choose to plot eo

against σ for �i −�o = Mi(0) = 0 and Mo = −π, and for a selection of mass
ratios and ei(0).

For a given value of n and for fixed values of ei(0), m2/m1 and m3/m12,
the two boundaries of the [n : 1](2) resonance are given by

σ(eo) = n± Δσn(eo) = n± 2 [An(eo)]
1/2

, (3.79)
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Fig. 3.14. (a): The [12:1](2) resonance. (b): Resonance overlap. This example cor-
responds to m2/m1 = m3/m1 = 0.01 and ei(0) = 0.5 (see Fig. 3.16). See text for
discussion

where An(eo) is given by (3.64). Note that this assumes exact resonance occurs
when

φ̇n = νi − nνo = 0, (3.80)

that is when σ = νi/νo = n; however, if �̇i/νo is significant, it will shift exact
resonance away from this (recall the precise expression (3.51) for φ̇n; see also
Fig. 3.15). Figure 3.14(a) plots eo against σ for the [12:1](2) resonance for a
particular set of initial conditions, with the shaded region corresponding to
libration of the resonance angle φ12,10 while panel (b) shows the overlap of
the resonances [n : 1](2), n = 9, 10, . . . , 15 for the same initial conditions. The
lower (green)-shaded regions in panel (b) formally correspond to stable libra-
tion of the resonance angles φn, while the unshaded regions correspond to sta-
ble circulation for which the inner and outer orbits have constant semi-major
axes. The upper (red)-shaded region corresponds to the overlap of neighbour-
ing resonances (as well as more distant resonances), so that a system with
initial conditions corresponding to any point in this region is predicted by the
resonance overlap stability criterion to be unstable.

How does this compare with direct numerical experiments? Figure 3.15(a)
shows a stability map for equal-mass configurations with initially circular in-
ner binaries, for various initial period ratios and outer eccentricities. A dot
corresponding to the initial values of σ and eo is plotted if a direct numerical
integration of the three-body equations of motion results in an unstable sys-
tem. Rather than integrating the system until one of the bodies escapes, two
almost identical systems (the given system and its “ghost”) are integrated in
parallel and the difference in the inner semi-major axes at outer apastron is
monitored (because this variable is approximately constant for non-resonant
systems). Taking advantage of the sensitivity of a chaotic system to initial con-
ditions, this difference will grow in proportion to the initial difference between

10Even though (3.79) gives σ as a function of eo, it seems more natural to plot
the resonance boundaries with σ as the independent variable.
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Fig. 3.15. Experimental vs theoretical stability boundary. The position of each red
(grey) dot in (σ − eo) space corresponds to the initial conditions of an unstable
system for which the masses are equal, ei(0) = 0, and Mi(0) = 0 and Mo(0) = −π.
The black curves are the resonance boundaries given by (3.79), which terminate at
points for which ei(To) = 1. Notice the structure of the distribution of dots near these
termination points; this reflects the process of exchange of m3 into the inner binary
(consistent with ei(To) > 0). Systems deemed stable (see text for how this decision
is made) are those for which exchange occurs rapidly. While the resonance overlap
stability criterion predicts the stability boundary fairly accurately, some of the red
dots fall inside single-resonance regions which ought to be stable according to the
criterion. But the criterion assumes that when only one resonance angle is librating,
the forcing is negligible; this clearly is not true at these points. Also notice how the
red dots trace the separatrix at the left-hand boundaries, and in particular notice
the offset which is prominent for the 5:1 resonance; this is analogous to spectral line
splitting by a magnetic field and is a result of the influence of 
̇i, which has been
neglected in (3.79)

two systems (10−7 in the inner eccentricity) for a stable system, but will grow
exponentially for an unstable system as discussed in Sect. 3.3.3. The actual
stability boundary fairly accurately follows the points at which neighbour-
ing resonances overlap; however, the stability criterion does not predict the
unstable nature of some systems inside single-librating regions (correspond-
ing to the green regions in Fig. 3.14(b)) because it assumes that forcing is
negligible there.

Figure 3.16 shows stability maps for a variety of initial conditions. Each
map has m1 = 1, Mi(0) = 0 and Mo(0) = −π and aligned periastra except
for panel (f). Consider the systems (a), (c) and (e) for which ei(0) 	= 0 and
η = �i −�o = 0. The librating regions for which there is no overlap with a
neighbouring resonance are relatively free of unstable systems, while those for
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Fig. 3.16. Stability maps for a variety of initial conditions (m1 = 1). Notice how
resonance shapes vary significantly from panel to panel, but the resonance overlap
stability criterion is still successful at predicting the stability boundary (except for
the single-librating regions). The dashed curve in the top left-hand corner of each
panel corresponds to Rp/ai = 1, where Rp = ao(1 − eo) is the outer periastron
distance (data were not collected beyond this curve). (a): planetary-like system
with significant inner eccentricity; (b): low-mass secondary with zero initial inner
eccentricity; (c): Jupiter-like outer body orbiting an equal-mass eccentric binary;
(d): “binary” consisting of a heavy body and an equal-mass binary; (e) and (f):
equal-mass system with ei(0) = 0.2. Here η = 
i −
o, the two plots demonstrating
the effect of rotating the orbits relative to each other. Notice that even resonances are
more stable than odd in (a) while the opposite is true in (b) (see text for discussion)
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odd resonances tend to be full down to near the resonance cross-over points.
The reason for this is as follows. Referring to (3.42) on p. 80, we see (putting
n′ = 1 and m = 2) that for these initial conditions, φn(0) = nπ. Since libration
is around zero (because An > 0), a system starting at exact resonance, that
is, with σ = n, will stay there if n is even because it is at the very centre
of the resonance (see Fig. 3.12 on p.84), while if n is odd, the system starts
at the hyperbolic fixed point on the separatrix! An odd-n system for which
σ 	= n (and is indicated on the stability map to be inside a resonance) actually
begins outside the librating region; recall that the definition of the resonance
boundary uses the value of the separatrix at φn = 0. However, it will still be
strongly forced and its proximity to the separatrix will cause it to be unstable.
A more detailed analysis can be found in M1a.

We should expect from this discussion that a system for which η = �i −
�o 	= 0 will exhibit different behaviour, and this is indeed the case as panel
(f), for which η = π/2, reveals. In this case φn = (n+ 1)π and we see that it
is the even resonances that are now more unstable.

The fact that ei(0) 	= 0 for the examples just discussed means that the
inner orbit begins with a definite periastron direction. What about when
ei(0) = 0? Figure 3.15 as well as panels (b) and (d) in Fig. 3.16 show that
points on the left-hand sides of the resonances tend to be unstable while
points on the right-hand side are stable up to where the resonances overlap.
We interpret this as indicating that the induced periastron direction associ-
ated with the induced eccentricity tends to be such that η(To) � π/4 so that
φn = (2n+ 1)π/2.

Another feature of Fig. 3.16 worth noting is the patch of instability at
the lower-left corner of panel (a). This is common for low-order resonances in
planetary-like systems and actually corresponds to libration around π (this is
discussed in detail in M2).

3.4.10 A Simple Algorithm for Predicting Stability

For most applications one needs to know the stability characteristics of single
systems. Thus rather than give a formula for the stability boundary, we end
this chapter by presenting an algorithm for testing the stability of individual
configurations. Note that it only holds for coplanar systems11 and is restricted
to systems for which the [n : 1](2) resonances dominate. These are such that
either both m2/m1 > 0.01 and m3/m1 > 0.01 or at least one of m2/m1 > 0.05
or m3/m1 > 0.05. The algorithm is as follows:

1. Identify which [n : 1](2) resonance the system is near and calculate the
distance δσn from that resonance: δσn = σ−n, where n = �σ� (the nearest
integer for which n ≤ σ),

11A Fortran routine for arbitrarily inclined systems is available from the author.
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Fig. 3.17. Comparison of (a) experimental and (b) theoretical data for equal mass
coplanar systems with ei(0) = 0

2. Take the associated resonance angle to be zero rather than the definition
(3.42) (see discussion below), φn = 0;

3. Calculate the induced eccentricity from (3.74) and (if m1 	= m2) the maxi-
mum octopole eccentricity from (3.75). Determine ei = max[ei(To), e

(oct)
i ]

for use in s
(22)
1 (ei),

4. Calculate An from (3.64);
5. Calculate En and En+1 from (3.70) and deem the system unstable if En < 0

and En+1 < 0.

Figure 3.17 compares the experimental data shown in Fig. 3.15 with data
generated using the algorithm above. A dot is plotted if a system is deemed to
be unstable. The boundary structure is reproduced reasonably well, although
the boundary itself should be slightly lower, a result of the fact that the
resonance overlap criterion does not recognize the unstable nature of points
near to but outside the separatrix. This is also the reason for taking φn = 0
for all initial conditions (recall the discussion in the previous section on odd
and even resonances).
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4.1 Introduction

In this chapter, I explain how the evolution of an N -body system can be de-
scribed using a formalism explicitly based on the distribution function in phase
space. Such an approach can be contrasted with direct N -body simulations in
which the trajectories of a large number of particles are integrated. Because
trajectories with close initial conditions diverge exponentially in gravitational
N -body systems (Goodman et al. 1993; Hemsendorf & Merritt 2002, and
references therein), most results of N -body simulations must be interpreted
statistically. It is therefore interesting to consider the simulation methods that
treat the gravitational system in an explicitly statistical way.

Since the early 1980s, the numerical solution of the Fokker–Planck (FP)
equation has been the technique of choice for a statistical treatment of colli-
sional systems such as globular clusters or dense galactic nuclei. In its basic
version, on which I focus, this equation (combined with the Poisson equa-
tion) describes the evolution of a stellar system in dynamical equilibrium; but
evolving slowly through the effects of two-body relaxation. In this chapter,
I further restrict myself to spherically symmetric configurations with no net
rotation, as most researchers in the field have done, to make the problem
easier to tackle. As far as relaxation is concerned, the Monte-Carlo numerical
scheme, presented in Chap. 5, is essentially equivalent to solving the FP equa-
tion using a particle-based representation of the distribution function instead
of tabulated data. Therefore, the assumptions and limitations inherent in the
FP description of relaxation, which are described in detail in this chapter,
also apply to Monte-Carlo techniques.

A note of caution is required here. The dynamics of a gravitational N -body
system is highly non-linear, with the possibility that small differences in the
“microscopic” conditions (such as the existence and properties of a binary
star) can lead to rather large macroscopic differences in evolution. The FP
approach does not provide a statistical description of the various macroscop-
ically distinct possible evolutions. When such divergences are expected to
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97–121 (2008)
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occur, such as in the process of collisional runaway or post-collapse core os-
cillations (see Sect. 4.5), the only way to capture them in a satisfying way
by means of FP simulations is probably by including some explicit stochastic
process and repeat the simulation several times with different random se-
quences (see Takahashi & Inagaki (1991) for an example in the case of core
oscillations).

In the last decade or so, FP codes have lost some ground to direct N -body
and Monte-Carlo codes. Indeed, these particle-based methods make it easier
to include a variety of physical effects thought to play an important role
in real systems and faster computers enable the use of higher and higher
particle numbers. Nevertheless, because FP computations are very fast and
produce data that are much smoother, less memory-consuming and easier
to manipulate than particle-based simulations, they are an invaluable tool for
exploring large volumes of parameter space. They also help in gaining a better
understanding of “macroscopic” collisional stellar dynamics by providing a
description at a level more suitable than that of “microscopic” point-mass
particles attracting each other.

In Sect. 4.2, I present the Boltzmann equation which is at the heart of
the statistical description of an N -body system. In Sect. 4.3, I give an outline
of the derivation of the main forms of the FP equation used to simulate the
effects of relaxation in spherical stellar systems. Finally, Sect. 4.5 is a quick
overview of the applications of the FP approach in stellar dynamics with a
focus on the additional physics that can be incorporated into that framework.

4.2 Boltzmann Equation

4.2.1 Notation

The following notations are in use in this section. Position and velocity in 3D
space are denoted by

x = (x, y, z) = (x1, x2, x3) ,

and
v = (vx, vy, vz) = (v1, v2, v3) .

For a point in the 6D phase space, I use the notation

w = (x,v).

The gradient of a field u in 3D space is written

∇u ≡ ∂u

∂x
=
(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)

,

and the gradient in the 6D phase space is

∇u ≡ ∂u

∂w
=
(
∂u

∂x
,
∂u

∂y
,
∂u

∂z
,
∂u

∂vx
,
∂u

∂vy
,
∂u

∂vz

)

.
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4.2.2 Collisionless System

In this section, I follow mostly the treatment presented in Sect. 4.1 of Binney
& Tremaine (1987, hereafter BT87).

We consider a large number N∗ of bodies moving under the influence of
a smooth gravitational potential Φ(x, t). Here smooth means essentially that
Φ does not change much over distances of the order of (a few times) the av-
erage inter-particle distance n−1/3, where n is the particle number density.
No other forces affect the motion of these objects. The potential Φ may be
the gravitational field created by these bodies themselves or an external field.
The system of particles is described through the one-particle phase-space dis-
tribution function (DF for short) f(x,v, t). A useful interpretation of f is as
a probability density if it is normalised to 1. Then f(x,v, t)d3xd3v is the
probability of finding at time t, any given particle within a volume of phase
space d3xd3v around the 6D phase-space point w = (x,v). The mean number
of particles in this volume is N∗f(x,v, t)d3xd3v.

From the knowledge of the initial conditions f0(x,v) ≡ f(x,v, t0), we
want to predict f(x,v, t) at some future time t > t0. We define the velocity
in the 6D phase-space

ẇ = (ẋ, v̇) = (v,−∇Φ). (4.1)

As long as Φ is sufficiently smooth, the particles evolve in a smooth, continuous
way in the phase-space. Therefore, f must satisfy a continuity equation

∂f

∂t
+ ∇ · (fẇ) =

∂f

∂t
+

3∑

i=1

∂(fvi)
∂xi

−
3∑

i=1

∂(f∂xi
Φ)

∂vi
= 0. (4.2)

This equation can be simplified using the fact that, in the phase-space repre-
sentation, the xi and vi are independent variables (∂vi/∂xj = 0), and that Φ
does not depend on the velocities so that ∂Φ/∂vi = 0. Therefore, we have

∂f

∂t
+

3∑

i=1

vi
∂f

∂xi
−

3∑

i=1

∂xi
Φ
∂f

∂vi
=

∂f

∂t
+ v · ∇f − ∇Φ · ∂f

∂v
= 0. (4.3)

This is the collisionless Boltzmann equation. It can be written simply as

Dtf = 0, (4.4)

where Dt is a notation for the “Lagrangian” or advective rate of change of f .
This equation means that, if we follow the trajectory of a (real or imaginary)
particle in the phase-space, the number density around it does not change. In
other words, the flow in phase-space is incompressible.

We note that there is an equation which is equivalent, but more general
(and of less practical use) for the distribution function in the N∗-particle
phase-space, in which a point represents all the positions and velocities of
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the N∗ bodies of the system. It is Liouville’s theorem (BT87, Sect. 8.2). The
collisionless Boltzmann equation follows from Liouville’s theorem and the as-
sumptions that the number of particles is very large and that there are no two-
particle correlations. In other words, the probability of finding particle 1 at w1

and particle 2 at w2 is simply given by the product f(w1, t)f(w2, t)d6w1 d6w2

(BT87, Sect. 8.3). While the first approximation is certainly valid in many as-
trophysical situations such as galaxies and globular clusters (but see comments
below about multi-component systems), the second is violated by two-body
effects such as mutual deflections or the existence of small bound sub-groups,
in particular binaries. In fact, as long as they do not interact closely with
other objects and are themselves numerous enough, binaries can in principle
be treated as just a special component, for which a particle is really a bi-
nary. Two-particle effects such as deflection due to close encounters are called
collisional effects, and the Fokker–Planck treatment, described below, is an
approximate but manageable way to take them into account.

The Boltzmann equation is valid whether f is interpreted as a number,
mass, luminosity or probability density. The distribution function f does not
need to represent a system of objects with identical physical properties (stel-
lar masses, radii, etc.) but may be used, globally, for a mixed population.
As long as all sub-populations share the same f0, or if we are not interested
in distinguishing between them, and the system is collisionless, a unique f
is enough to describe the system and its evolution. If there are different sub-
populations with initially distinct distribution functions (as would be the case
for a globular cluster with primordial mass segregation), each population (in-
dex α) can be assigned its own DF fα. In the absence of collisional terms,
the only coupling between the evolution of the various fα is through the fact
that they move in the same global potential Φ to which each component
contributes, unless it is treated as a mass-less tracer. Specifically, Φ is ob-
tained from the fα’s and a possible external potential Φext through the Poisson
equation,

Φ(x) = Φself + Φext with ∇2Φself = 4πG
Ncomp∑

α=1

Mα

∫

d3v fα(x,v)
︸ ︷︷ ︸

ρα

, (4.5)

where Ncomp is the number of components and Mα the total mass in com-
ponent α (with the normalisation

∫
d3v d3x fα = 1). In the following we will

generally assume a fully self-gravitating system, Φ(x) = Φself .
Because the Boltzmann equation simply states conservation of the phase-

space density along physical trajectories, it keeps the same form if another
coordinate system is used instead of the Cartesian (x, y, z) as long as f still
represents the number density per unit volume of the (x, y, z, vx, vy, vz) phase-
space.
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4.2.3 Collision Terms

When particles are subject to forces other than those produced by the smooth
Φ, the convective derivative of f does not vanish anymore. In particular, in
a real self-gravitating N -particle system the potential cannot be smooth on
small scales. Instead, it exhibits some graininess, i.e. short-term, small-scale
fluctuations, Φreal = Φ + ΔΦgrainy. Here I call relaxation the effects of these
fluctuations on the evolution of the system described by f . Schematically, they
are due to the fact that a given particle does not see the rest of the system as
a smooth mass distribution but as a collection of point-masses. Relaxational
effects, also known (somewhat confusingly) as collisional effects, can there-
fore be seen as particles influencing each other individually as opposed to
collectively. To allow for these effects, a right-hand collision term Γ has to be
introduced into the Boltzmann equation,

Dtf = Γ [f ]. (4.6)

We now develop an expression for Γ . Let Ψ(w,Δw)d6(Δw)dt be the probabil-
ity that a particle at the phase-space position w is perturbed (through forces
not derived from Φ) to w+Δw during dt. In general, Ψ is also a function of t
but I drop this dependence here to simplify notation. Stars are scattered out
of an element of phase space around w at a rate

Γ− = −f(w)
∫

d6(Δw)Ψ(w,Δw), (4.7)

while stars from other phase-space positions (w−Δw) are scattering into this
element at a rate

Γ+ =
∫

d6(Δw)f(w − Δw)Ψ(w − Δw,Δw). (4.8)

The collision term is thus Γ = Γ+ + Γ− and the Boltzmann equation with
such a collision term is called the master equation.

4.3 Fokker–Planck Equation

4.3.1 Fokker–Planck Equation in Position-Velocity Space

Theoretically, the master equation is of very general applicability because very
few simplifying assumptions have been made so far. Unfortunately, it is of lit-
tle practical use unless some explicit expression for the transition probability
Ψ is known. The Fokker–Planck treatment is based on the assumption that Ψ
is sufficiently smooth and that typical changes Δw are small. We can then de-
velop Ψ and f around w in a Taylor series to second order in Δw. Specifically,
in the term Γ+, we write
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f(w − Δw)Ψ(w − Δw,Δw) = f(w)Ψ(w,Δw) −
6∑

i=1

Δwi
∂

∂wi
[Ψ(w,Δw)f(w)]

+
1
2

6∑

i,j=1

ΔwiΔwj
∂2

∂wi∂wj
[Ψ(w,Δw)f(w)] + O((Δw)3).

(4.9)

Defining the diffusion coefficients (DCs)

〈Δwi〉 ≡
∫

d6(Δw)ΔwiΨ(w,Δw),

〈ΔwiΔwj〉 ≡
∫

d6(Δw)ΔwiΔwjΨ(w,Δw),
(4.10)

and plugging the development (4.9) into the collision term of the master equa-
tion, we obtain the general Fokker–Planck (FP) equation,

Dtf = −
6∑

i=1

∂

∂wi
[f(w)〈Δwi〉] +

1
2

6∑

i,j=1

∂2

∂wi∂wj
[f(w)〈ΔwiΔwj〉] . (4.11)

Here 〈Δwi〉 is the mean change in wi per unit time due to collisional effects.
These diffusion coefficients are generally functions of w and t, but I have not
written these dependencies explicitly.

Now, in the case of stellar dynamics, we identify the collisional changes
Δw with the effect of Keplerian, hyperbolic, uncorrelated two-body encounters
and assume that they occur instantaneously, i.e. on a time-scale much shorter
than the dynamical time-scale tdyn ≡ R

3/2
cl (GMcl)−1/2, where Mcl is the total

mass of the system and Rcl is some typical length scale such as the half-mass
radius. In this local approximation, we neglect the change in position and only
consider changes in velocity. This means that Ψ(w,Δw) = 0 if Δx 	= 0 and
the Fokker–Planck equation reads

Dtf = −
3∑

i=1

∂

∂vi
[f(x,v)〈Δvi〉] +

1
2

3∑

i,j=1

∂2

∂vi∂vj
[f(x,v)〈ΔviΔvj〉] . (4.12)

4.3.2 Diffusion Coefficients and Approximations for Relaxation

Let us sketch the computation of the velocity diffusion coefficients. In practice,
we do not need to compute the transition probability Ψ. Instead we use the
fact that, for instance, 〈Δvi〉 is the mean rate of change of the component i
of the velocity of a given particle (called the test particle) as it is perturbed
by all other particles (the field particles). To carry out the computations,
we have to adopt the following set of approximations, usually referred to as
“Chandrasekhar theory of relaxation” (Chandrasekhar 1943, 1960. See for
instance Hénon 1973; Saslaw 1985; Spitzer 1987; Binney & Tremaine 1987;
Heggie & Hut 2003):
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1. Local approximation. The collisional perturbations to the motion of the
test particle are assumed to take place on a scale much smaller than the
size of its orbit. Formally, this holds if perturbations from distant stars
with a long time-scale are negligible.

2. Small perturbations approximation. We assume that on time-scales of or-
der tdyn (or shorter), the “collisions” produce only a small change in the
orbital parameters of a particle; for the diffusion coefficients this trans-
lates into tdyn〈Δvi〉 � v, tdyn〈ΔviΔvj〉 � v2. This is an extension of the
FP approximation, which will make it possible to average the FP equation
over the orbit of stars. Most importantly for the time being, it justifies
the assumption that perturbations are two-body effects only and that they
add linearly. In other words, to this level of approximation, the combined
effect of two field particles on a test particle are the same as the sum
of the effects of each taken independently. In particular, the interaction
between both field particles can be neglected. Hence, we are only con-
sidering the so-called two-body relaxation. This simplification only holds
if perturbations from very close stars (leading to large changes in v) are
negligible.

3. Homogeneity approximation. This is sometimes considered part of the lo-
cal approximation. We assume that the cumulative effects of the pertur-
bations on the test object are as if the properties of the field particles
(density, velocity distribution) were the same in the whole system and
equal to what they are in the vicinity of the test object. In other words,
the local conditions are representative of the global ones. This arguably
looks like an unjustified assumption, given how heterogeneous stellar sys-
tems are (for instance, the density in a globular cluster or galactic nucleus
decreases by many orders of magnitude from the centre to the half-mass
radius) and the long-range, unshielded nature of the gravitational force.
We will see as we proceed why it may be a reasonable simplification, but
we note that it can only work if distant perturbations do not dominate.

To sum up, the standard theory of relaxation is based on the assumptions
that relaxation can be reduced to the cumulative effects of a large number of
uncorrelated two-body encounters that can be treated like (local) Keplerian
small-angle hyperbolic velocity deflections due to objects with a density and
velocity distribution identical to the local ones.

All these approximations are shared by other explicitly statistical methods
used to follow the long-term evolution of stellar clusters, such as the Monte-
Carlo scheme (see Chap. 5) and the gaseous model (Bettwieser & Spurzem
1986; Louis & Spurzem 1991; Giersz & Spurzem 1994; Spurzem & Takahashi
1995; Amaro-Seoane et al. 2004), but some approximations can be improved
on. In particular, large velocity changes (due to close encounters) can be
included (Goodman 1983a; Freitag et al. 2006a).

To compute the diffusion coefficients we start by looking at the hyperbolic
Keplerian encounter between the test particle, with velocity v and mass m and
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a field particle with velocity vf and mass mf . We only consider field particles of
a given mass, possibly different from m. Standard numerical methods based
on the FP equation require that the mass spectrum is discretised. Hence,
we assume there are Nf particles of mass mf described by the distribution
function ff , now with the normalisation

∫
d3xd3vff = Nf .

Using the local approximation, we can assume that the encounter takes
place in a vacuum. In other words, the orbits are straight lines at large sep-
aration (“infinity”). The relative velocity at infinity is vrel = v − vf and the
velocity of the centre-of-mass (CM) of the pair vcm = μv + (1 − μ)vf with
μ = m/(m + mf). If b is the impact parameter, the effect of the encounter is
simply to rotate the relative velocity by an angle

tan
(
θ

2

)

=
b0
b

with b0 =
G (m+mf)

v2
rel

. (4.13)

The value b0 is the impact parameter leading to a deflection angle π/2 (in
the CM frame). We decompose the change of velocity Δv into components
parallel and perpendicular to the initial relative velocity vrel,

Δv⊥ = 2(1− μ)vrel
b

b0

(

1 +
b2

b20

)−1

, Δv‖ = 2(1− μ)vrel

(

1 +
b2

b20

)−1

. (4.14)

We then transform from the reference frame aligned with vrel (dependent on
vf) to the external frame to get the Δvi’s. The next step is to average over
all (equally probable) possible orientations of the impact parameter vector
around the direction of vrel. This gives values of 〈Δvi〉 and 〈ΔviΔvj〉 for
fixed vf and b. Now we sum the effects of all the encounters with field stars
having this velocity. The number density of such objects is ffd3vf (considered
independent of the position, owing to the homogeneity approximation) and
the rate of encounters with an impact parameter between b and b + db is
2πbdbvrelffd3vf . We have to integrate over all possible impact parameters.
This involves the integrals

∫ bmax

0

Δv‖bdb = vrel(1 − μ)b20 ln(1 + Λ2)

∫ bmax

0

(Δv‖)2bdb = 2v2
rel(1 − μ)2b20

(

1 − 1
1 + Λ2

)

∫ bmax

0

(Δv⊥)2bdb = 2v2
rel(1 − μ)2b20

(

ln(1 + Λ2) − 1 +
1

1 + Λ2

)

.

(4.15)

In these relations, Λ = bmax/b0 where bmax is the ill-defined maximum impact
parameter. For a system that is not too centrally concentrated, we can set
b = Rcl. In most cases, Λ � 1 so the integrals can be approximated by
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∫ bmax

0

Δv‖bdb � 2vrel(1 − μ)b20 lnΛ,

∫ bmax

0

(Δv‖)2bdb � 0,

∫ bmax

0

(Δv⊥)2bdb � 4v2
rel(1 − μ)2b20 lnΛ.

(4.16)

Hence, the cut-off bmax only enters the computation of the diffusion coefficients
through the multiplicative Coulomb logarithm lnΛ. Due to the very weak
logarithmic dependency, we can replace m and mf in b0 by the mean value
Mcl/N∗ and vrel by the 1D velocity dispersion σv measured, for example, at
the half-mass radius, unless σv is a very steep function of the position such
as around a massive black hole. Further, for a self-gravitating system in virial
equilibrium, σ2

v ≈ GMcl/Rcl so that Λ must be of order N∗. Putting Λ = γcN∗,
direct N -body experiments indicate that γc ≈ 0.1 for single-mass systems
and γc ≈ 0.01 (with considerable uncertainty) if objects have a realistic mass
spectrum (See Hénon 1975 for theoretical estimates and Giersz & Heggie 1994,
1996, amongst others, for the determinations based on N -body simulations).

Although the above integrals are carried out from b = 0, remember that the
FP approximation requires small changes in v. This suggests that encounters
with b smaller than a few b0 (causing deflection angles not small compared
to π/2) cannot be taken into account. But truncating the integrations at
bmin = a few b0 would just bring in terms smaller than those in (4.16) by a
factor lnΛ. This is reflected by the fact that the typical time-scale for an
encounter within kb0, with k some numerical coefficient, is

tla =
[

nσvπ(kb0)2
(

1 +
2Gm
kb0σv

)]−1

≈
(
nσvπ(kb0)2

)−1 ≈ σ3
v

k G2m2n
, (4.17)

where n is the number density, σv the velocity dispersion and m the (mean)
mass of a particle. For k ≈ 1 this large-angle deflection time-scale is of order
lnΛ longer than the relaxation time (see (4.24)). However, from these consid-
erations, it does not follow that large-angle deflection cannot play an impor-
tant role in some circumstances; while the standard two-body relaxation, by
definition, leads to gradual changes in orbital properties, a single large-angle
encounter causes sudden orbit modifications, which may have very different
consequences. This may produce ejections or lead to strong interactions be-
tween stars and a central massive black hole in a galactic nucleus (Hénon
1960; Lin & Tremaine 1980; Freitag et al. 2006a. See also Chap. 5).

The contribution to the relaxation of encounters with b between b1 and
b2 with b2 > b1 � b0 is proportional to ln(b1/b2). This explains why the
structure of the stellar system at large distances from the test particle has
little importance in practice. The average inter-particle distance is

d̄ ≡ n−1/3 =
(
m

ρ

)1/3

≈
(
mR3

cl

Mcl

)1/3

= N∗
−1/3Rcl, (4.18)
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while b0 ≈ N∗
−1Rcl. So, somewhat surprisingly, about two thirds of the contri-

bution to two-body relaxation come from encounters with impact parameters
smaller than d̄. This is why the homogeneity approximation is a good one.

Carrying out the computation of the diffusion coefficients using (4.16), we
arrive at

〈Δvi〉 = 4π lnΛG2mf(m+mf)
∂h(v)
∂vi

,

〈ΔviΔvj〉 = 4π lnΛG2m2
f

∂2g(v)
∂vi∂vj

,

(4.19)

where h(v) and g(v) are the Rosenbluth potentials (Rosenbluth et al. 1957),

h(v) =
∫

d3uff(u) |v − u|−1 and g(v) =
∫

d3uff(u) |v − u| . (4.20)

Recall that all these quantities have an implicit x-dependence.
If the velocity distribution is isotropic, we can go further in the computa-

tion of the diffusion coefficients for the velocity. We find (e.g. Spitzer 1987)

〈Δv‖〉 = −4πλm2
f

(

1 +
m

mf

)

E<
2 (V ),

〈Δv⊥〉 = 0,

〈(Δv‖)2〉 =
8π
3
λm2

f v(E
<
4 (v) + E>

1 (v)),

〈(Δv⊥)2〉 =
8π
3
λm2

f v(3E
<
4 (v) − E<

4 (v) + 2E>
1 (v)),

〈Δv‖Δv⊥〉 = 0,

(4.21)

where λ ≡ 4πG2 lnΛ,

E<
n (v) =

∫ v

u=0

(u

v

)n

ff(u)du, and E>
n (v) =

∫ ∞

u=v

(u

v

)n

ff(u)du. (4.22)

We see that the mass of the test particle m only appears in the coefficient
〈Δv‖〉 for dynamical friction. From this, the diffusion coefficients for the energy
can be computed using ΔE = vΔv‖ + 1

2 (Δv⊥)2 + 1
2 (Δv‖)2, which gives

〈ΔE〉 = 4πλm2
f v

(

E>
1 (v) − m

mf
E<

2 (v)
)

,

〈(ΔE)2〉 =
8π
3
λm2

f v
3
(
E<

4 (v) + E>
1 (v)

)
.

(4.23)

We can write E>,<
n = ξ>,<

n nσ−3
v , where ξ>,<

n are dimensionless, order-of-
unity (and position-dependent) numbers, n is the local number density of
field stars and σv their local 1D velocity dispersion. The time-scale trlx over
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which the direction of the velocity of a typical star (with v = v̄ ≡ 31/2σv) has
changed completely due to relaxation can be estimated, using (4.23) and the
definition 〈(Δv⊥)2〉v̄trlx ≡ σ2

v . We find t−1
rlx ≈ lnΛG2m2

f nσ
−3
v . A conventional

definition of the local relaxation time is obtained by assuming that the velocity
distribution is isotropic and Maxwellian and using the mean stellar mass m
(Spitzer 1987),

trlx ≡ 0.339
σ3

v

lnΛG2m2n
. (4.24)

In the case of a system with objects of different masses, the relaxational effect
of a species α is proportional to nαm

2
α rather than its density (e.g. Perets et al.

2007). On the other hand, dynamical friction, corresponding to the second,
negative term for 〈ΔE〉 (see (4.23)), has a time-scale proportional to ρ = mn,
the total mass density of the field, irrespective of the individual masses of the
stars (for more on dynamical friction, see Chap. 7).

This is as far as we can go without further restriction on the distribution
function ff . If there is a single species of particles, ff = f and the FP equation,
consisting of (4.12) with the above diffusion coefficients (4.19), together with
the Poisson equation, determine the evolution of the DF in a self-contained
way. Unfortunately, the FP equation is a very intricate integro-differential
equation which, at this point, cannot be solved in whole generality.

Furthermore, realistic stellar systems are composed of objects with a range
of properties (in particular masses). We can assume that there is a discrete
set of populations orbiting in their common total potential and influencing
each other through two-body relaxation. Each component k is described by
DF fk, which follows an FP equation, but the diffusion coefficients are now a
sum of contributions from each component

〈Δvi〉k = 4π lnΛG2

×
Ncomp∑

l=1

[

ml(mk +ml)
∂

∂vi

(∫

d3ufl(u) |v − u|−1

)]

. (4.25)

4.4 Orbit-Averaged Fokker–Planck Equation

4.4.1 General Considerations

To go further and obtain more easily usable versions of the FP equation, we
need to restrict ourselves to stellar systems that are spherically symmetric in
all their properties.1 The use of the FP equation to study the structure and

1This does not imply that the velocity distribution is isotropic, meaning that
it is spherically symmetric in velocity space, but that the local velocity distribu-
tion depends only on the moduli of the components of the velocity parallel and
perpendicular to the radius-vector.
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evolution of stellar clusters was pioneered by Hénon (1961), who derived the
FP equation for an isotropic (but multi-mass) cluster and found an analyt-
ical, self-similar solution for the single-mass case, assuming the existence of
a central energy source. The first numerical codes producing general time-
dependent solutions were written by Cohn (1979, 1980) and, to this day,
most of the work in this field is based on the formalism and numerical meth-
ods developed by this author (but see Takahashi 1995 and references therein
for a finite-element scheme to solve the FP equation, based on a variational
principle).

The FP equation can also be used for systems with axial symmetry, such
as globular clusters or galactic nuclei with global rotation, but we will not
treat this approach here (see Goodman 1983b; Einsel 1996; Einsel & Spurzem
1999; Kim et al. 2002, 2004; Fiestas 2006; Fiestas et al. 2006; Kim et al. 2008
for this original line of research under active development).

We also assume that the stellar system is in (quasi-)dynamical equilibrium.
In other words, it evolves very little over dynamical timescales,

∣
∣
∣f/ḟ

∣
∣
∣ � tdyn.

If evolution is only due to two-body relaxation and the system is fully self-
gravitating, this assumption holds provided N∗ is sufficiently large because∣
∣
∣f/ḟ

∣
∣
∣ ≈ trlx ≈ N∗(lnΛ)−1tdyn with lnΛ = ln(γcN∗) ≈ 5− 15. For single-mass

systems with N∗ � 103, the distinction between dynamical and relaxational
effects (or between the smooth and grainy parts of the potential) becomes
blurred. When stars have a broad mass spectrum, a larger number of stars is
required for a clear distinction between dynamical and relaxational regimes.

From Jeans’ theorem (Jeans 1915; Merritt 1999) for a spherical system in
dynamical equilibrium, the DF f can depend on the phase-space coordinates
(x,v) only through the (specific) orbital energy E and modulus of the angular
momentum J ,

f(x,v) = F (E(x,v), J(x,v)) with E = φ(r) +
1
2
v2, J = r vt, (4.26)

where r = |x|, v = |v| in a system of reference centred on the cluster centre,2

φ is the spherically symmetric smooth gravitational potential so that Φ(x) =
φ(r), and vt is the modulus of the component of the velocity perpendicular to
the radius-vector x.

4.4.2 Isotropic Spherical Cluster

We first consider the simpler case of a cluster with isotropic velocity dispersion,
where F depends on E only. We also assume only one component. LetN(E)dE
be the number of stars with energy between E and E+dE. The transformation
from F to N is found by integrating over the phase-space accessible to orbits

2I use the word “cluster” to designate all (spherically) symmetric stellar systems
including galactic nuclei.
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with energy between E and E + δE and then letting δE be an infinitesimal
δE → dE,

N(E)δE =
∫

[E,E+δE]

d3xd3vF (E) = 16π2

∫

r

dr r2
[∫

v

dv v2F (E)
]

. (4.27)

We bring F (E) out of the integrals because it is nearly constant in the in-
tegration domain (by definition). We first realise the v-integration, at fixed
r, which runs from v =

√
2(E − φ(r)) to v + δv with δv � δE/v giving

∫
v
dv v2 �

√
2(E − φ(r))δE. Finally remains the integration over r which

runs from 0 to rmax(E) defined such that φ(rmax) = E. We neglect the small
part of the integration domain with r between rmax(E) and rmax(E + δE)
because its contribution is of higher order in δE. Once we replace δE by dE,
we find

N(E) = 16π2p(E)F (E), (4.28)

with
p(E) =

∫ rmax

0

r2v dr =
∫ rmax

0

r2
√

2(E − φ(r))dr. (4.29)

Note that the quantity p(E) is proportional to the radial orbital period aver-
aged in J space (isotropised orbital period),

p(E) =
1
2

∫ J2
c (E)

0

d(J2)Porb(E, J) with Porb(E, J) = 2
∫ rmax

rmin

dr
vr
, (4.30)

where Jc(E) is the angular momentum of a circular orbit of energy E.
We could transform the FP equation in (x,v)-space (4.12) into an equation

for the rate of change of N(E), but it is much simpler to start over from
scratch. The collisional term of an FP equation for N(E) simply reads

dN
dt

∣
∣
∣
∣
coll

= − ∂

∂E
[{ΔE}N(E)] +

1
2
∂2

∂E2

[
{(ΔE)2}N(E)

]
. (4.31)

Here the computation of the diffusion coefficients involve averaging over the
volume of space accessible to a particle of energy E, reflecting the transfor-
mation from F (E) to N(E) (4.28) and (4.29),

{ΔE} = p(E)−1

∫ rmax

0

r2v〈ΔE〉dr, (4.32)

where 〈ΔE〉 is the local diffusion coefficient for the kinetic energy. In other
words, the mean rate of change of 1

2v
2 for a particle at position r with velocity

v =
√

2(E − φ(r)).
The smooth potential φ may change slowly as a result of the relaxational

evolution of the cluster itself, or because of an external influence. In any case,
this will induce a change in the energy not accounted for by the collisional
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term (4.31). So, if we write DtN(E) for the “Lagrangian” rate of change of
density in energy space following the φ-induced change in E, we obtain the
right-hand side of the FP for N(E),

DtN(E) =
∂N

∂t
+
∂N

∂E

dE
dt

∣
∣
∣
∣
φ

=
dN
dt

∣
∣
∣
∣
coll

, (4.33)

where dE/dt|φ is the change in energy due to the evolution of the potential.
It can be shown that it is equal to the phase-space averaged value of ∂φ/∂t,

dE
dt

∣
∣
∣
∣
φ

= p(E)−1

∫ rmax

0

∂φ(r)
∂t

r2vdr. (4.34)

We see that the FP equation for N(E) as well as its generalisation to the
anisotropic case (see Sect. 4.4.3) are orbit-averaged. Again, the condition for
this averaging to be valid is that the system evolves only very little over one
dynamical time, staying close to dynamical equilibrium.

To solve numerically the FP equation, it is usual to write it in a flux-
conservation form,

DtN(E) = −∂FE

∂E
with FE = mDEF −DEE

∂F

∂E
. (4.35)

Using (4.23), it can be shown that the flux coefficients are

DE =16π3λmf

∫ E

φ(0)

dE′p(E′)Ff(E′),

DEE =16π3λm2
f

[

q(E)
∫ 0

E

dE′Ff(E′) +
∫ E

φ(0)

dE′q(E′)Ff(E′)

]

,

(4.36)

where

q(E) =
∫ E

φ(0)

dE′p(E′) =
1
3

∫ rmax

0

r2v3 dr. (4.37)

Here q(E) is the volume of phase-space accessible to particles with energies
lower than E, and p(E) is the area of the hypersurface bounding this volume,
that is, p(E) = ∂q/∂E (Goodman 1983a). q(E) is also proportional to the
isotropised radial action,

q(E) =
1
4

∫ J2
c (E)

0

d(J2)Q(E, J), with Q(E, J) = 2
∫ rmax

rmin

dr vr. (4.38)

We have used an index “f” for “field” to distinguish the mass and DF of the
population we follow (test stars) from the “field” objects. This distinction does
not apply to a single-component system, but makes it very easy to generalise
to a multi-component situation by summing over components to get the total
flux coefficient,
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DE =
Ncomp∑

l=1

DE,l, DEE =
Ncomp∑

l=1

DEE,l, (4.39)

where the flux coefficient for component l can be written by replacing the
subscript “f” by “l” in (4.36) (e.g. Murphy & Cohn 1988).

We now explain schematically how the FP equation is used numerically to
follow the evolution of star clusters. A more detailed description can be found
in, for example, Chernoff & Weinberg (1990). In the most common scheme,
pioneered by Cohn (1980), two types of steps are realised in alternation.

1. Diffusion step. The change in the distribution function F for a discrete time
step Δt is computed by use of the FP equation assuming the potential φ
is fixed, setting DtN = ∂N

∂t = ∂N
∂t

∣
∣
coll

. The FP equation, written as a flux-
conserving equation, is discretised on an energy grid. The flux coefficients
are computed using the DF(s) of the previous step; this makes the equations
linear in the values of F on the grid points. The finite-differentiation scheme
is the implicit Chang & Cooper (1970) algorithm, which is first-order in
time and energy.

2. Poisson step. Now the change of potential resulting from the modification in
F is computed and F is modified to account for the term dE/dt|φ, assuming
DtN = ∂N

∂t + ∂N
∂E

dE
dt

∣
∣
φ

= 0. This is done implicitly by using the fact that
as long as the change in φ over Δt is very small, the actions of each orbit
are adiabatic invariants. Hence, during the Poisson step, the distribution
function, expressed as a function of the actions, does not change. Using
the isotropised radial action q(E) defined above, F̃ (q)dq = F (E)p(E)dE
with F̃ (q) = F (E(q)). In other words, the modified F (E) is obtained by
recomputing the relation q(E) in the modified potential. In practice, an
iterative scheme is used to compute the modified potential, determined
implicitly by the modified DF through the relation

φ(r) = −4πG
[
1
r

∫ r

0

dss2ρ(s) +
∫ ∞

r

dssρ(s)
]

, (4.40)

with

ρ(r) = 4πm
∫ Emax

φ(r)

dE
√

2(E − φ(r))F (E), (4.41)

for one component. The iteration is started with the values of φ, ρ, etc.
computed before the previous diffusion step.

4.4.3 Anisotropic Spherical Cluster

The anisotropic FP treatment was already used to study some aspects of
the structure of globular clusters by Spitzer & Shapiro (1972). This type
of approach was then applied to the distribution of stars around a mas-
sive black hole (assuming φ = −GMBH/r where MBH is the mass of the
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black hole) by Lightman & Shapiro (1977) and Cohn & Kulsrud (1978).
Although the first self-consistent FP simulations by Cohn (1979) made use
of an anisotropic code, further work on such models was relatively limited
in comparison to the isotropic case because the Chang & Cooper (1970)
discretisation scheme, which proved so useful for getting good energy con-
servation when the DF depended only on E (and t), has no exact equiva-
lent for the case of a 2D (E, J) dependence. Also, in most circumstances,
it seems that forcing isotropy does not affect the results much and allows
a substantial reduction in the computational burden. Cohn (1985) first pre-
sented results of anisotropic FP models based on an extension of the Chang–
Cooper scheme. Since then, Takahashi (1995, 1996, 1997) and Drukier et al.
(1999) have developed FP codes for spherical clusters with anisotropic velocity
distributions.

Let F (E(x,v), J(x,v))d3xd3v be the number of stars with position within
a volume d3x around x and velocity within d3v around v. Because of spherical
symmetry, we can write d3x = 4πr2dr and d3v = 4πvtdvtdvr. We note that
F (E, J) = 0 if J > Jc(E). Let N(E, J)dE dJ be the number of stars with
energy between E and E + dE and angular momentum between J and J +
dJ . To convert from F (E, J) to N(E, J), we follow a star with energy E
and angular momentum J on its orbit and integrate the volume of phase-
space along the way. We use the distance from the centre r as integration
variable,

N(E, J)dE dJ = 4π
∫ rmax(E,J)

rmin(E,J)

r2drVr(E, J)dE dJ. (4.42)

Here Vr(E, J)dE dJ denotes the (infinitesimal) volume in v-space with energy
between E and E + dE and angular momentum between J and J + dJ , for a
fixed r. We have

Vr(E, J)dE dJ = 4πvtdvtdvr = 4πvt

∥
∥
∥
∥

∂E
∂vt

∂E
∂vr

∂J
∂vt

∂J
∂vr

∥
∥
∥
∥

−1

dE dJ = 4π
vt

rvr
dE dJ,

(4.43)
which leads to

N(E, J) = 8πPorb(E, J)J F (E, J). (4.44)

In numerical applications, it is convenient to use R ≡ (J/Jc(E))2 as a variable
instead of J . Then the density of particles per unit E and R is

Ñ(E,R) = 4πJc(E)2Porb(E, J)F (E, J). (4.45)

The FP equation for Ñ(E,R), in its flux-conserving form, is a direct extension
of the isotropic one,

DtÑ(E,R) = −∂FE

∂E
− ∂FR

∂R
, (4.46)
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with

FE = mDEF −DEE
∂F

∂E
−DER

∂F

∂R
,

FR = mDRF −DRR
∂F

∂R
−DER

∂F

∂E
.

(4.47)

The expression for the flux coefficients are significantly longer than in the
isotropic case; they are given by Cohn (1979) for single-mass clusters and by
Takahashi (1997) for the multi-mass case.3 To my knowledge, in all numerical
solutions of the anisotropic FP equation for stellar systems, an isotropised DF
is used in the computation of the diffusion and flux coefficients. For instance,
for DEE , we use

DEE =
32π3

3
λm2

f

∫ rmax

rmin

dr
vr

[
v2

∫ 0

E

dE′F̄f(E′, r)

+ v−1

∫ E

φ(r)

dE′F̄f(E′, r) (2(φ(r) − E′))3/2
]
.

(4.48)

Here, F̄f is the isotropised DF

F̄f(E′, r) =
1

Jmax

∫ Jmax

0

dJFf(E′, J), (4.49)

where Jmax(E, r) =
√

2r2(φ(r) − E) is the maximum (scaled) angular mo-
mentum that an orbit of energy E can have if it goes through radius r and
Rmax = (Jmax/Jc).2

4.5 The Fokker–Planck Method in Use

To conclude this chapter, I present a quick and partial overview of the work
carried out in cluster and galactic nucleus modelling using the direct resolution
of the Fokker–Planck equation. My goal here is to provide pointers to the
literature that will allow the reader a deeper exploration of this rich field.

4.5.1 Relaxational Evolution

The only physics included in the Fokker–Planck formalism presented here is
self-gravity (through use of the Poisson equation) and two-body relaxation.
This is enough to study the evolution of stellar clusters (with no or few pri-
mordial binaries) up to core collapse. The case of a single-mass cluster was

3Beware that in the work of these authors, E is the binding energy and has
therefore the opposite sign as here, with corresponding sign changes to be tracked
in the computation of the coefficients and E-derivatives.



114 M. Freitag

initially computed by Cohn (1979, 1980) for a Plummer model, and revisited
several times since, to explore a variety of initial cluster structures (Wiyanto
et al. 1985; Quinlan 1996) or to investigate the core-collapse physics in greater
detail using more sophisticated Fokker–Planck codes (Takahashi 1995; Drukier
et al. 1999). Clusters with stars of different masses are much more realistic
and have been considered by several authors (e.g. Merritt 1983; Inagaki &
Wiyanto 1984; Inagaki & Saslaw 1985; Murphy & Cohn 1988; Chernoff &
Weinberg 1990; Lee 1995; Takahashi 1997; Kim et al. 1998).

In a multi-mass cluster with a realistic mass spectrum, the evolution to
core collapse is driven by mass segregation. FP simulations are the ideal tool
to investigate how this process operates in the limit of a very large number
of stars. They are quick and their results are not affected by any significant
numerical noise, in contrast to particle-based methods such as direct N -body
or Monte-Carlo codes. In Fig. 4.1, I show the evolution of the Lagrangian radii
for a cluster with stellar mass spectrum, dN∗/dM∗ ∝ M−2.35

∗ , covering the
range 0.2–10M�. The simulation was performed using an FP code provided
by H.M. Lee (e.g. Lee et al. 1991) using 12 mass components. The initial
structure is a Plummer model. In Fig. 4.2, I plot the evolution of the central
“temperature” for several mass components. We see that energy equipartition
is approached at the centre only amongst the most massive stars (roughly in
the range 3–10M�).

Using an energy grid of 200 elements, such an FP run requires only 1–2 min
of CPU time on a laptop computer. For an anisotropic code that solves the FP
equation in (E, J) space, the simulation runs for about 4 days on a desktop
computer (G. Drukier 2007, personal communication). When the mass spec-
trum is discretised into a larger number of mass components, the computing
time increases approximately linearly with the number of components. The
corresponding direct N -body simulation with 256 000 particles took about 40
days using special-purpose GRAPE hardware (H. Baumgardt 2005, personal
communication), and a Monte-Carlo simulation using 106 particles took about
one week on a desktop computer (see Chap. 5).

4.5.2 Models with Additional Physics

In order to simulate more realistic and complex systems, the Fokker–Planck
description of two-body relaxation has been complemented by approximate
treatment of a large variety of other physical effects. Here I give a list of these
effects with references to some pioneering or otherwise notable FP works where
they have been considered.

• Central massive black hole. Assuming a quasi-stationary regime and a
fixed Keplerian potential, Lightman & Shapiro (1977) and Cohn & Kulsrud
(1978) used the FP formalism to determine the distribution of stars around
a massive black hole (MBH) and the rate of stellar disruptions by the
MBH. The treatment of the loss cone developed for these works was later
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M
M
M
M

M

Fig. 4.1. Core collapse of a Plummer cluster model with 0.2–10M� Salpeter mass
function, dN∗/dM∗ ∝ N−2.35

∗ . Results of an isotropic Fokker–Planck code provided
by H. M. Lee, in solid lines, are compared to a direct Nbody4 simulation with 256 000
particles, in dashes (H. Baumgardt 2005, personal communication). To show mass
segregation, the evolution of Lagrangian radii for mass fractions of 1 and 50 per cent
is plotted for stars with masses within five different bins (corresponding to 5 of the
12 discrete mass components used for the FP simulation). The length unit is the
N -body scale (see Chap. 1). The time unit is the initial half-mass relaxation time
(Spitzer 1987). To convert the dynamical time units of the N -body simulation to a
relaxation time, a value of γc = 0.045 was used for the Coulomb logarithm. Compare
with Fig. 5.4

introduced in self-consistent FP codes to study the evolution of globular
clusters hosting an intermediate-mass black hole or of dense galactic nu-
clei (Cohn 1985; David et al. 1987a, b; Murphy et al. 1991). Simplified FP
codes, assuming in particular a fixed potential, have been used to investi-
gate the segregation of stellar-mass black holes around a MBH (Hopman &
Alexander 2006; Alexander 2007; O’Leary et al. 2008) and the formation
of a central cusp of dark matter (Merritt et al. 2007a). Very recently, a
FP code which includes the gravity of the stars self-consistently was used
to study the shrinkage of a binary MBH (Merritt et al. 2007b) and the
evolution of small nuclear clusters (Merritt 2008).

• Stellar evolution. Mass loss due to stellar evolution can be included by
reducing the stellar mass represented by a mass component as a function
of time (e.g. Lee 1987a; Chernoff & Weinberg 1990; Quinlan & Shapiro
1990; Murphy et al. 1991).

• Collisions. Some FP simulations have included the effects of collisions re-
sulting in mergers (Lee 1987a; Quinlan & Shapiro 1989, 1990) or (partial)
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m
m

σ

Fig. 4.2. Evolution of the central temperatures during the core collapse of a
multi-mass cluster model. The temperature of component i is defined as Ti ≡
3/2(mi/〈m〉)σ2

i (0), where mi is the mass of a star of component i, σi(0) the central
1D velocity dispersion of that component in N -body units and 〈m〉 the mean stellar
mass. The data come from the same Fokker–Planck simulation as in Fig. 4.1. The
solid lines are the temperatures for the same five mass components (highest to lowest
mass from top to bottom). The dashed line represents the mass-weighted average
central temperature

disruptions (David et al. 1987a, b; Murphy et al. 1991). The FP approach
has also been used to follow the evolution of galaxy clusters, taking into
account galaxy mergers and mass stripping due to encounters between
galaxies (Merritt 1983, 1984, 1985; Takahashi et al. 2002). Collisions can
only be treated in an averaged and highly approximate fashion in the FP
formalism, because the mass and orbital energy of collision products of
any mass have to be transferred to the predefined mass components. Fur-
thermore, the effects of collisions on stellar evolution cannot be included
in any detailed way. Finally, in the case of collisional runaway, which is
the growth of one or a few stars to very high mass by successive mergers,
mass components have to be introduced that contain a very small num-
ber of stars (sometimes less than one). Nevertheless, comparisons with the
Monte-Carlo algorithm (Chap. 5) where collisions can be treated more
accurately generally show good agreement, as far as the overall effects of
collisions are concerned (Freitag & Benz 2002; Freitag et al. 2006b).

• Binary stars. In a cluster containing no binaries initially, some will form
near the centre during core collapse when the density reaches sufficiently
high values, either through dissipative two-body effects or through close
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three-body interactions (e.g. Aarseth 1971; Heggie & Hut 2003). Both
kinds of mechanism have been included in FP codes (Statler et al. 1987;
Lee et al. 1991; Takahashi & Inagaki 1991; Lee & Ostriker 1993, amongst
others). In most cases the binary population is not followed explicitly.
Instead, the formation, hardening and ejection of binaries are simply in-
cluded as an effective central source of heating able to stop and reverse
core collapse. Binary heating can result in gravothermal core oscillations in
the post-collapse evolution (Cohn et al. 1989; Takahashi & Inagaki 1991;
Breeden et al. 1994). A more detailed treatment of binaries would necessi-
tate to represent them by at least one additional component (Lee 1987b;
Gao et al. 1991). Only limited physical realism can be achieved because it
is not practical to extend the phase space to include the internal properties
of the binaries, which include mass ratio, semi-major axis and eccentricity.
This limitation explains why, to the best of my knowledge, primordial bi-
naries have only been included into the FP framework by Gao et al. (1991).
Furthermore, in the case of dynamically formed binaries, only a few are
expected to be present in the core at any given time (Goodman 1984;
Baumgardt et al. 2002), making a description based on the distribution
function inadequate.

• Large-angle scatterings. Goodman (1983a) included the effects of close two-
body encounters in FP simulations and concluded that they do not affect
appreciably the core collapse process.

• Evaporation. Assuming the cluster is on a circular orbit around a spherical
galaxy (or in the equatorial plane of an axially symmetrical galaxy), the
evaporation of stars in the steady tidal field can be approximated in a
spherical FP code by an outer boundary condition. For an isotropic for-
mulation, the condition is F (Et) = 0 with Et = −GMclR

−1
t and Rt is the

tidal truncation radius, which can be identified with the distance between
the centre of the cluster and the Lagrange point L1 or L2 (e.g. Chernoff
& Weinberg 1990). A more accurate condition can be used in anisotropic
models by setting the DF to zero for orbits with an apocentre distance
larger than Rt (Takahashi et al. 1997). Delayed evaporation can be sim-
ulated to account for the fact that a star can spend a significant amount
of time in the cluster even when its orbital parameters would allow it to
reach the Lagrange points (Lee & Ostriker 1987; Takahashi & Portegies
Zwart 2000).

• Gravitational shocking. In general, as it orbits its host galaxy, a globu-
lar cluster can experience strongly varying external gravitational stresses.
Murali & Weinberg (1997a) and Gnedin et al. (1999) have included so-
called disc and bulge shocking in their FP simulations, which allowed
them to study the evolution of whole globular cluster systems (Gnedin &
Ostriker 1997; Murali & Weinberg 1997b, c). Thank to a new integration
scheme, shocking has been studied in anisotropic FP models (Shin et al.
2008).
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• Gas dynamics. (David et al. 1987a, b) coupled the FP algorithm with a
spherical gas dynamical code to predict what amount of the gas released
by stars through evolution and collisions is accreted by a central MBH in
AGN models. However, gas motion is likely to be highly non-spherical and
to vary on time-scales much shorter than those for evolution of the stellar
cluster (e.g. Williams et al. 1999; Cuadra et al. 2005).

FP simulations, including several of the above physical processes, have been
used to interpret observations of a few specific globular clusters: M 15
(Grabhorn et al. 1992; Dull et al. 1997), M 71 (Drukier et al. 1992), NGC 6397
(Drukier 1993, 1995) and NGC 6624 (Grabhorn et al. 1992). In the future,
it seems likely that particle-based methods will be used to produce detailed
models of observed clusters (see Giersz & Heggie 2003, 2007 and Hurley et al.
2005 for pioneering examples). These codes can deal realistically with stel-
lar populations that are rare or otherwise problematic to simulate with FP
methods, such as primordial binaries, blue stragglers or X-ray binaries. How-
ever, because they are so much faster, FP codes can be an invaluable tool
to carry out extensive parameter-space exploration and determine the initial
conditions and physical parameters most likely to fit the observational data.
Direct N -body or Monte-Carlo simulations can then be used, using these input
parameters, to obtain more detailed models.
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Hénon M., 1973, in Martinet L., Mayor M., eds, Lectures of the 3rd Advanced Course

of the Swiss Society for Astronomy and Astrophysics. Obs. de Gèneve, Gèneve,
p. 183 102
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5.1 Introduction

In this chapter I describe a fast, approximate, particle-based algorithm to
compute the long-term evolution of stellar clusters and galactic nuclei. It
relies on the assumptions of spherical symmetry of the stellar system, dynam-
ical equilibrium and local, diffusive two-body relaxation. It allows for velocity
anisotropy, an arbitrary stellar mass spectrum, stellar evolution, a central
massive object, collision between stars, binary processes and two-body en-
counters leading to large deflection angles. Using one to ten million particles,
a run extending over several relaxation times takes a few days to a few weeks
to compute on a single-CPU personal computer and the CPU time scales
as tCPU ∝ Np lnNp, where Np is the number of particle used. Because each
physical process is implemented with its explicit scaling, the number of stars
simulated can be (much) larger than Np, making it possible to simulate galac-
tic nuclei with (in particular) the correct rate of relaxation.

The Monte-Carlo (MC) numerical scheme is intermediate, both in terms
of realism and computing time between Fokker–Planck or gas approaches and
direct N -body codes. The former are very fast but based on a significantly ide-
alised description of the stellar system, the latter treat (Newtonian) gravity in
an essentially assumption-free way but are extremely demanding in terms of
computing time (Binney & Tremaine 1987; Sills et al. 2003). The MC scheme
was first introduced by Hénon to follow the relaxational evolution of globular
clusters (Hénon 1971a,b; Hénon 1973a; Hénon 1975). To my knowledge there
exist three independent codes based on Hénon’s ideas in active development
and use. The first is the one written by M. Giersz (Giersz 1998, 2001, 2006;
Giersz et al. 2008), which implements many of the developments first intro-
duced by Stodo�lkiewicz (1982, 1986). Second is the code written by K. Joshi
(Joshi et al. 2000, 2001) and greatly improved and extended by A. Gürkan
and J. Fregeau (see for instance Fregeau et al. 2003; Gürkan et al. 2004, 2006;
Fregeau & Rasio 2007). These codes have been applied to the study of globu-
lar and young clusters. Finally, we developed a MC code specifically aimed at
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the study of galactic nuclei containing a central massive black hole (Freitag &
Benz 2001c; Freitag & Benz 2002; Freitag et al. 2006a; Freitag et al. 2006b,c).
The description of the method given here is based on this particular imple-
mentation.1

This chapter is organised as follows. In Sect. 5.2, the core principles and
assumptions of the method are presented. In Sect. 5.3, I expose the inner
workings of the code in detail: the basic algorithm which treats global self-
gravity and two-body relaxation is the subject of Sect. 5.3.1 while Sect. 5.3.2
covers the additional physical processes (collisions, central object, binaries,
stellar evolution, etc). Finally, in Sect. 5.4. I show a few applications and
discuss possible avenues for future developments of the method, in the context
of research on star clusters (Sect. 5.4.1) and on galactic nuclei (Sect. 5.4.2).

5.2 Basic Principles

The MC code shares most of its underlying assumptions with the Fokker–
Planck (FP) approach presented in Chap. 4. Essentially, Hénon’s algorithm
can be seen as a particle-based method to solve the coupled FP and Pois-
son equations for a stellar cluster using Monte-Carlo sampling to determine
the long-term effects of two-body relaxation. An advantage of the MC ap-
proach over FP integrations is that it can include a continuous stellar mass
spectrum and extra physical ingredients such as stellar evolution, collisions,
binaries or a central massive black hole in a much more straightforward and
realistic way. On the downside, MC simulations require considerably more
computing time. Furthermore, the MC results show numerical noise while
those obtained with the FP codes are smooth and easier to analyse and ma-
nipulate.

The assumptions shared by both methods are the following:

1. Dynamical equilibrium
2. Spherical symmetry
3. Diffusive relaxation
4. Adequacy of representation with a one-particle distribution function.

An isolated system is likely to attain dynamical equilibrium after an ini-
tial phase of violent relaxation spanning a few dynamical times tdyn =√
R3

cl/(GMcl), where Rcl is a characteristic length (such as the half-mass
radius) and Mcl the mass of the cluster. The MC code developed by Spitzer
and collaborators (Spitzer & Hart 1971a,b; Spitzer & Thuan 1972; Spitzer &

1This code is available at http://www.ast.cam.ac.uk/research/repository/freitag/MC.htm
General information on the MC method and more references can be found on
the web pages created for the MODEST consortium (“MOdeling DEnse STellar
systems”) at http://www.manybody.org/modest/ (follow the link to the working
group on stellar-dynamics methods, WG5).

http://www.ast.cam.ac.uk/research/repository/freitag/MC.html
http://www.manybody.org/modest/
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Shull 1975; Spitzer & Mathieu 1980) allows for out-of-equilibrium situations,
at the price of computing speed, but the assumption of spherical symmetry
strongly limits the usefulness of this feature.

In practice, the strongest restriction is that of spherical symmetry. Vio-
lent relaxation generally leads to an equilibrium configuration with signifi-
cant triaxiality (e.g. Aguilar & Merritt 1990; Theis & Spurzem 1999; Boily &
Athanassoula 2006). Although it is likely that two-body relaxation makes the
system more symmetrical, flattening owing to global rotation can persist over
many relaxation times (Einsel & Spurzem 1999; Kim et al. 2002, 2004; Fiestas
et al. 2006). In galactic nuclei, the interaction between the stars and a binary
massive black hole (e.g. Merritt & Milosavljević 2005) or a massive accre-
tion disc (e.g. Šubr et al. 2004) cannot be studied accurately when spherical
symmetry is assumed (see Sect. 5.4.2).

The last two assumptions have been discussed in Chap. 4 on FP methods.
They imply that correlations between particles, beyond random two-body
encounters, are neglected but I stress that three- and four-body interactions
in the form of binary processes can be included in the MC approach with much
more realism than permitted by the direct FP formalism (see Sect. 5.3.2).

It should be noted at once that all these assumptions can only be valid
if the system under consideration contains a large number of stars. In my
experience, the MC approach is suitable if the number of particles Np satisfies

Np � 3000
mmax

〈m〉 , (5.1)

where mmax and 〈m〉 are the maximum and mean stellar mass, respectively.
In Hénon’s scheme, the numerical realisation of the cluster is a set of spher-

ical shells with zero thickness, each of which is given a mass M , a radius R,
a specific angular momentum J and a specific kinetic energy T . These parti-
cles can be interpreted as spherical layers of synchronised stars that share the
same stellar properties, orbital parameters and orbital phase and experience
the same processes (relaxation, collision, etc.) at the same time.

From the radii and masses of all particles, the potential can be computed
at any time or place and the orbital energies of all particles are straightfor-
wardly deduced from their kinetic energies and positions. Hence the set of
particles can be regarded as a discretised representation of the distribution
function (DF) f(x,v) = F (E, J). But, whereas a functional or tabulated ex-
pression of the DF (as implemented in direct FP methods) would require the
integration of the Poisson equation, to yield the gravitational potential, the
Monte-Carlo realisation of the cluster provides it directly. From this point of
view, the Monte-Carlo method is closer to N -body philosophy than to direct
FP methods.

The main difference between the MC code and a spherical 1D N -body
simulation (e.g. Hénon 1973b) is that the former does not explicitly follow
the continuous orbital motion of particles, which preserves E and J . How-
ever, these orbital constants, as well as other properties of the particles, are
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modified by collisional processes to be incorporated explicitly: two-body relax-
ation, stellar collisions, etc. So the MC simulation proceeds through millions
to billions of steps, each of them consisting of the selection of particles, the
modification of their properties to simulate the effects these physical processes
and the selection of radial positions R on their new orbits.

5.3 Detailed Implementation

5.3.1 Core Algorithm

This subsection is divided into four parts. In the first, I present the treatment
of relaxation and the overall structure of the code. In the following parts
I explain in detail some important aspects of the algorithm, which are the
selection of a pair of particles to evolve, the representation of the gravitational
potential and the determination of a new orbital position for updated particles.

Two-Body Relaxation and General Organisation

The treatment of two-body relaxation is the backbone of Hénon-type Monte-
Carlo schemes. It relies on the usual diffusive approximation developed by
Chandrasekhar and presented in Chap. 4. I recall that the basic idea behind
the concept of relaxation is that the gravitational potential of a stellar system
containing a large number of bodies can be described as the sum of a dom-
inating smooth contribution plus a small, granular, part that fluctuates over
small scales and short times. When only the smooth part is taken into account,
the DF of the cluster obeys the collisionless Boltzmann equation. However,
in the long run the fluctuating part makes E and J change slowly and the
DF evolve. The basic simplifying assumption underlying Chandrasekhar relax-
ation theory is to treat the effects of the fluctuating part as the sum of multiple
uncorrelated two-body hyperbolic gravitational encounters with small devia-
tion angles. Under these assumptions, if a test star of mass m travels through
a field of stars with homogeneous number density n, which all have mass
mf and the same velocity, after a time span δt its velocity in the reference
frame of the encounters will deviate from the initial direction by an angle θ
such that

〈θ〉δt = 0 and

〈
θ2
〉

δt
� 8πn lnΛ

G2 (m+mf)
2

v3
rel

δt,
(5.2)

where vrel the relative velocity between the test star and the field stars and
lnΛ � ln(γcN∗) for a self-gravitating cluster with the value of γc depending
on the mass spectrum (see Chap. 4).
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Hénon’s method avoids the computational burden and some of the nec-
essary simplifications connected with the numerical evaluation of diffusion
coefficients. The repeated application of (5.2) to a given particle implicitly
amounts to a Monte-Carlo integration of the orbit-averaged diffusion coef-
ficients, provided the orbital positions and properties of field particles are
correctly sampled. Under the usual assumption that encounters are local, this
latter constraint is obeyed if we take these properties to be those of the clos-
est neighbouring particle. Furthermore, this allows us to actually modify the
velocities of both particles at a time, each acting as a representative from the
field for the other. Evolving particles in symmetrical pairs not only speeds up
the simulations by a factor � 2 but also, and more critically, ensures strict
conservation of energy.

Therefore, at the heart of the MC treatment of relaxation are super-
encounters, encounters between two neighbouring particles with a deflection
angle θSE devised to reproduce statistically the cumulative effects of the nu-
merous physical deflections taking place in the real system over a time span
δt. Using the indices 1 and 2 to designate the particles in a pair, we see that,
in order to reproduce the values of (5.2) for deflection angles corresponding
to a time step δt, we must set

θSE =
π

2

√
δt

t̂rlx 1,2

, (5.3)

where

t̂rlx 1,2 ≡ π

32
v3
rel

lnΛG2 (m1 +m2)
2
n

(5.4)

is the pair relaxation time.

With no other physical process than relaxation included, a single step in
a MC simulation consists of the following operations.

1. Selection of a pair of adjacent particles to evolve. This procedure also
determines the (local) value of the time step δt as explained below.

2. Modification of the orbital properties (Ei and Ji) of the particles through
a super-encounter. This involves
(a) estimation of the local density n entering t̂rlx 1,2 in (5.4),
(b) random orientation of the velocity vectors vi of the particles respecting

their angular momenta Ji = ‖Ji‖ and specific kinetic energy Ti = 1
2vi

2

(this sets the centre-of-mass [CM] and relative velocities vCM and vrel;
the former defines the encounter CM frame while the latter allows θSE

to be determined through (5.3) and (5.4),
(c) random orientation of the orbital plane in the CM frame around the

direction of the relative velocity (the angle θSE is known, so computing
the post-encounter velocities in the CM frame is trivial) and

(d) transformation back to the cluster frame to obtain the modified E′
i

and J ′
i .
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3. For each particle, selection of a new position on the (E′
i,J

′
i)-orbit. As a

particle is a spherical shell, its position is simply its radius Ri. This step
comprises the update of the potential to take these new positions into
account.

To compute the local density required in step 2a, we build and maintain
a radial Lagrangian grid, the cells of which typically contain a few tens of
particles each. Frequent updates (each time a particle gets a new position R)
and occasional rebuilds of the mesh introduce only a very slight computational
overhead.

Selection of a Pair of Particles and Determination of Time Step

For the sake of efficiency, we wish to use time steps that reflect the large
variations of the relaxation time between the central and outer parts of a
stellar cluster. The other constraint determining the selection procedure is
that particles in an interacting pair must have the same δt, lest energy not be
conserved.2 But adjacent particles only form a pair momentarily and separate
after their interaction as each is attributed a new position. This necessitates
the use of local time steps, i.e. δt should be a function of R alone instead of
being attached to particles.

For the time steps to be sufficiently short, we impose

δt(R) ≤ fδtt̃rlx(R), (5.5)

where t̃rlx is a locally averaged relaxation time,

t̃rlx ∝ 〈v2〉 3
2

lnΛG2〈m〉2n (5.6)

and 0.005 ≤ fδt ≤ 0.05 typically. The time t̃rlx is evaluated approximately
with a sliding averaging procedure and tabulated from time to time to reflect
the slow evolution of the cluster.

The members of a pair arrived at their present position at different times
but have to leave it at the same time after a super-encounter. Building on
the statistical nature of the scheme, instead of trying to maintain a particle
at radius R during exactly δt(R), we only require the expectation value for
the residence time at R to be δt(R). As explained by Hénon (1973a), this
constraint can be fulfilled if the probability for a pair at R to be selected is
proportional to 1/δt(R). This is realised in the following way.

• Because it would be difficult to define and use a selection probability Pselec

that is a function of the continuous variable R, we define it to depend on
2When collisions are included, a shared δt also ensures that the probability for

particle i to collide with particle j equates the symmetrical quantity.
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the rank i of the pair (rank 1 designates the two particles that are closest
to the centre, rank 2 the second and third particles, at increasing R and so
on). For a given cluster’s state, local relaxation times t̃rlx are computed at
the radial position of every pair. Rank-depending time steps are defined
to obey inequality (5.5),

δt(i) ≤ fδtt̃rlx(R(i)). (5.7)

• Normalised selection probabilities are computed by

Pselec(i) =
δt

δt(i)
with δt =

⎛

⎝
Np−1∑

j=1

1
δt(j)

⎞

⎠

−1

, (5.8)

from which we derive a cumulative probability,

Qselec(i) =
i∑

j=1

Pselec(j). (5.9)

• At each evolution step another particle pair is randomly chosen according
to Pselec. To do this, a random numberXrand is first generated with uniform
probability between 0 and 1. The pair rank is then determined by inversion
of Qselec,

i = Q−1
selec(Xrand). (5.10)

The binary tree (see Sect. 5.3.1) is searched twice to find the id-numbers
of the member particles, the (momentary) ranks of which are i and i+ 1.

• The pair is evolved through a super-encounter, as explained above, for a
time step δt(i).

• After a large number of elementary steps, δt(i) and Pselec(i) are re-
computed to reflect the slight modification of the overall cluster structure.

For the sake of efficiency, we must choose for Q−1
selec a function that is quickly

evaluated while Pselec(j) must approximate 1/t̃rlx(R(i)) as closely as possible
to avoid unnecessarily long time steps. A good compromise is to use a piecewise
constant representation, i.e. divide the cluster into some 50 radial slices and
use a constant Pselec in each. This is illustrated in Fig. 5.1 (with only 20 slices
for clarity). Once the selection probabilities have been determined, the value
δt relating them to the time step is set to δt = fδt max(Trel(i)Pselec(i)) so as
to ensure that the constraint of (5.5) is satisfied everywhere.

It must be stressed that the probabilities Pselec(i) and corresponding time
steps are computed in advance and are only updated (to reflect the evolution
of the structure) after each particle has been treated several times on average.
Once the pair of adjacent particles of rank i has been selected to be subject to
a super-encounter, the time step δt(i) is imposed and the encounter relaxation
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Fig. 5.1. Selection probabilities in a King W0 = 5 cluster model consisting of 10 000
particles. The inverse of the locally estimated relaxation time is compared to the
piecewise approximation used to set the probabilities in the MC code

time, t̂rlx 1,2, is determined by the particles’ properties and the local density
(5.4). This imposes the value of the deflection angle (5.3). In order to perform
a proper orbit averaging and sampling over the field particles, θSE should be
small so that a given particle would have experienced a large number of super-
encounters by the time its orbit has changed significantly. Unfortunately, this
is impossible to enforce strictly as the δt(i) values are based on an estimate of
the typical local relaxation time, while t̂rlx 1,2 can happen to be much shorter.
Using a sufficiently small value of fδt, we can keep the fraction of encounters
leading to large values of θSE to a low level.

Representation of the Gravitational Potential

The smooth part of the potential of the cluster is simply approximated as
the sum of the contributions of the Np particles, each of which is a spherical
infinitely thin shell. In other terms, compared to the potential in a system
of Np point-masses, we (implicitly) perform a complete smoothing over the
angular variables. Between particles of rank i and i+1, the (smooth) potential
felt by a particle at radius R ∈ [Ri, Ri+1] is simply

Φ(R) = −Ai

R
−Bi with Ai =

i−1∑

j=1

Mj and Bi =
Np∑

j=i

Mj

Rj
, (5.11)
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where Mj and Rj are the mass and radius of the particle of rank j. Although
we do not smooth the density distribution in the radial direction, tests show
that, in practice, this spherically symmetric potential does not introduce sig-
nificant unwanted relaxation for Np � 104 in simulations extending to an av-
erage number of steps per particle of a few thousands (Hénon 1971b; Freitag
& Benz 2001c). However, too small a time step parameter fδt can yield an
artificially accelerated evolution owing to this numerical relaxation.

At each step in the simulation, two particles are selected, undergo a super-
encounter and are given new positions on their slightly modified orbits. To
enforce exact energy conservation, the Ai and Bi coefficients are updated
after every such orbital displacement. Doing so saves much trouble connected
with a potential that lags behind the actual distribution of particles’ radii (and
masses when stellar evolution or collisions are included). However, performing
potential updates only after a large number of particle moves has advantages
of its own, in particular, the possibility of algorithm parallelisation (Joshi et al.
2000), but requires special measures to ensure satisfactory energy conservation
(Stodo�lkiewicz 1982; Giersz 1998; Fregeau & Rasio 2007).

The potential information is not represented by linear arrays (for the Ai

and Bi) but by a binary tree (Sedgewick 1988). This tree also contains ranking
information. It allows us to find a particle of a given rank, compute the poten-
tial at its position and update the potential data once the particle is moved
to another radius in O(logNp) operations instead of O(Np) as would be the
case with simple arrays. At any given time, each particle is represented by a
node in the tree. Each node is connected to (at most) two sub-trees. All the
nodes in the left sub-tree of a given node correspond to particles with smaller
radii and all the nodes in its right sub-tree to particles at larger radii. The
spherical potential is represented by (floating-point) δAk and δBk coefficients
attached to nodes. A third (integer) value, δik, allows the determination of
the radial rank of any particle. If we define LT k and RT k to be the sets of
nodes in the left and right sub-trees of node k, these quantities are defined by

δik = 1 + number of nodes in LT k,

δAk = Mk +
∑

m∈LT k

Mm and δBk =
Mk

Rk
+

∑

m∈RT k

Mm

Rm
.

(5.12)

An example of binary tree is shown in Fig. 5.2. After a large number of
specified steps, the binary tree is rebuilt from scratch to keep it well balanced.

Selection of a New Orbital Position

In a spherical potential Φ(R), a star of specific orbital energy E and angular
momentum J spends, during one complete radial oscillation, a time dt =
v−1
rad(R)dR in an infinitesimal interval of radius [R,R + dR], with
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Fig. 5.2. Binary tree for a cluster of 50 particles. The structure of the tree is shown
after many particles have been moved around since the tree was built. The lower
axis shows the radius of each particle. The tree keeps the particles sorted in radius.
The table on the right is the content of the three arrays used in the Fortran-77

code to implement the logical structure of the tree. Arrays l son(k) and r son(k)

indicate the root nodes for the left and right sub-trees of node k. Array father(k)

allows us to climb back to the root

v2
rad = 2E − 2Φ(R) − J2

R2
. (5.13)

Without knowledge of orbital phase, the probability density of finding the star
at R is thus

dPorb

dR
=

2
Porb

1
vrad(R)

, (5.14)
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where

Porb = 2
∫ Rapo

Rperi

dR
vrad(R)

(5.15)

is the radial orbital period.
Since dynamical equilibrium is assumed, the knowledge of the explicit or-

bital motion R(t) is not necessary. Instead, once a particle is updated, its posi-
tion R is picked up at random, but with the requirement of correct statistical
sampling. This means that the fraction of time spent at R must follow (5.14).
Let the sought-for probability of placing the particle at R ∈ [Rperi, Rapo] be
fplac(R) ≡ dPplac/dR. We have to compensate for the fact that if the particle
is placed at R, it will stay there for an average time δt/Pselec(R). The average
ratio of times spent at two different radii R1 and R2 on the orbit is

〈
tstay(R1)
tstay(R2)

〉

=
fplac(R1)Pselec(R2)
fplac(R2)Pselec(R1)

=
vrad(R2)
vrad(R1)

. (5.16)

This imposes the relation

fplac(R) ∝ Pselec(R)
vrad(R)

. (5.17)

The numerical implementation of this probability law is complicated by the
fact that vrad(R)−1 is not known analytically and becomes infinite at the peri-
centre and apocentre. However, vrad(R)−1 can always be capped by the
Keplerian value with the same J , Rperi and Rapo, allowing the use of an
efficient rejection method (Press et al. 1992, Sect. 7.3) to pick up R according
to (5.17).3

5.3.2 Additional Physics

Because it is based on particle representation, it is relatively easy to add a
variety of physical ingredients to the MC algorithm in order to improve the
realism of the simulations or the domain of applicability of the methods.

Collisions

Direct collisions are likely to occur in very dense stellar systems, from young
clusters to core-collapsed globular clusters to nuclei of small galaxies (e.g. the
various contributions in Shara 2002).

Let us consider a close approach between two stars with masses and radii
m1, r1 and m2, r2, respectively. The relative velocity at infinity is vrel and the

3This is the only significant improvement of the relaxation-only MC algorithm
over the method described by Hénon. He also used a binary tree in the latest versions
of his code although he did not describe it in his articles.



134 M. Freitag

impact parameter b. Neglecting tidal effects, a collision requires the centres of
the stars to come closer than dcoll = r1 + r2. Although neglected in our MC
code (because rare in galactic nuclei), tidal captures (Fabian et al. 1975) can
be be considered using dcapt = η(r1 + r2) with η > 1 a numerical coefficient
dependent on the velocity, masses and structures of the stars (e.g. Lee &
Ostriker 1986; Kim & Lee 1999). Treating the approach until physical contact
as a point-mass problem (assuming hyperbolic trajectories), we obtain the
largest impact parameter leading to contact, bmax, and the cross section,

Scoll 1,2 = πb2max = π(r1 + r2)2
[

1 +
(
v∗ 1,2

vrel

)2
]

, (5.18)

where

v2
∗ 1,2 =

2G(m1 +m2)
r1 + r2

(5.19)

is the relative velocity the stars would have at contact on a parabolic orbit. It is
of the order a few 100 km s−1 for main-sequence (MS) objects. The second term
in the bracket of (5.18) is the gravitational focusing, which highly enhances
the cross section over the geometrical value π(r1 +r2)2 as long as vrel < v∗ 1,2.
So, the collision rate for a star 1 travelling through a field of stars 2 with
identical masses, sizes and velocities with number density n2 is simply

dNcoll

dt

∣
∣
∣
∣
1,2

= n2vrelScoll 1,2 ≡ t−1
coll 1,2 (5.20)

which defines the collision time tcoll 1,2. If all stars have the same mass m and
size r, a number density n and their velocities follow a Maxwellian distribution
with 1D dispersion σ2

v , the average collision rate is (Binney & Tremaine 1987)

t−1
coll = 16

√
πnσvr

2

(

1 +
Gm

2σ2
vr

)

. (5.21)

Adding stellar collisions to the MC algorithm is relatively straightforward,
thanks to the use of particles to represent the cluster (as opposed to DFs, as
done in FP codes).

First, the determination of time steps (and corresponding pair-selection
probabilities) has to include, in addition to (5.5), the following constraint

δt(R) ≤ fδtt̃coll(R), (5.22)

with

t̃−1
coll = 16

√
πnσv〈r2〉

(

1 +
G〈mr〉
2σ2

v〈r2〉

)

, (5.23)

where σ2
v = 1/3〈v2〉m. The notations 〈· · · 〉 and 〈· · · 〉m denote number- and

mass-weighted averaged quantities, respectively.4 The choice of quantities to
4Note that (15) of Freitag & Benz (2002) is slightly incorrect.
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average is such that we retrieve the correct value for the average collision rate
in the limits σ2

v � G〈m〉〈r〉−1 and σ2
v � G〈m〉〈r〉−1.

Next, when a pair is selected for update, and once the local density and
relative velocity have been determined, the pair collision time is computed,
using (5.18), (5.19) and (5.20) but with n instead of n2. Hence, the probability
of collision between the pair during the time step δt is

Pcoll 1,2 = nvrelScoll 1,2 δt. (5.24)

The use of n rather than n2 is of central importance. This way, the collision
probabilities are symmetric, as they should be, Pcoll 1,2 = Pcoll 2,1. Further-
more, it would be impossible to estimate the local density of each population
particularly because, in MC codes as in N -body, each particle can represent a
star (or stars) with properties different from any other particle. What makes
this simplification possible is that for a given particle, the (local) probability
that the neighbouring particle is of type x (whatever the definition of a type
is) is simply nx/n, so the process of selecting the next particle as interaction
partner will, statistically, produce a rate of collisions with objects of type x
proportional to nx because n rather than nx is used to compute the pair col-
lision time. Including the estimate of the collision time in the determination
of the time steps ensures that, in a vast majority of cases, Pcoll 1,2 � fδt � 1,
avoiding time steps during which more than one collision should have occurred.
In the MC algorithm, a collision between two particles has a statistical weight
of N∗/Np. This means that every star in the first particle collides with a star
of the second particle and that all these collisions are identical so that the out-
come can be represented by (at most) two particles corresponding to N∗/Np

collision products each.
Then a random number Xrand, with uniform deviate between 0 and 1, is

generated and a collision between the two particles has to be implemented if
Xrand < Pcoll 1,2. In low-velocity environments, it is justified to assume that
collisions result in mergers with negligible mass loss (Freitag et al. 2006b),
but this simplification breaks down in galactic nuclei where σv > 100 km s−1

(Freitag & Benz 2002). We use prescriptions for the boundary between mergers
and fly-bys and for the amount of mass and energy lost based on a large set
of SPH simulations of collisions between MS stars (Freitag & Benz 2005).
The impact parameter is selected at random with uniform probability in b2

between 0 and b2max. Because evolution on the MS is neglected, a collision is
entirely determined by the values of m1, m2, vrel and b and its outcome is
determined using 4D interpolation and extrapolation from the SPH results
(Freitag & Benz 2002; Freitag et al. 2006c). The properties of the particles
are updated from the post-collision values of m1, m2 and vrel.

The particles are then placed at random radii on their new orbits, accord-
ing to (5.17). This concludes the step as two-body relaxation is not imple-
mented when a collision is detected. In highly collisional systems, this can
lead to an underestimate of relaxation effects and we have experimented with
a modified scheme in which every second step is collisional and the others are
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reserved for relaxation. This makes the code approximately twice as slow but
does not seem to affect the results significantly. In case of a merger or if one
or both stars are completely disrupted (a rare outcome requiring velocities in
excess of about 5 v∗ 1,2), the number of particles in the simulation is reduced
correspondingly.

One major theoretical uncertainty still to be tackled when it comes to the
effects of collisions in stellar dynamics is how they affect stellar evolution. In
case of mergers, the problem is made particularly difficult by the very high
rotation rate of the collision product (e.g. Sills et al. 1997, 2001; Lombardi
et al. 2002). In the face of this uncertainty we adopt a simple approach in
which we set the effective age of the collision product based on its mass and the
amount of core helium and assume no collisional mixing at all (see Portegies
Zwart et al. 1999 for another prescription).

While the hydrodynamics of collisions between two MS stars is now rela-
tively well understood (Sills et al. 2002; Freitag & Benz 2005; Dale & Davies
2006; Trac et al. 2007, and references therein), our knowledge about encounters
featuring other stellar types is still very limited, mostly because the physics
involved is more challenging. Collisions between a giant and a more compact
object are probably more common than MS–MS encounters, at least in galac-
tic nuclei where gravitational focusing is weaker, but only a few authors have
attempted to model such events (Davies et al. 1991; Rasio & Shapiro 1991;
Bailey & Davies 1999; Lombardi et al. 2006). The main question mark con-
cerns the evolution of the common envelope system resulting from the capture
of the more compact star (see, e.g. Taam & Ricker 2006 and Chap. 11). Colli-
sions between a compact remnant and a MS (or giant) star have been studied
numerically in a larger number of papers (Regev & Shara 1987; Benz et al.
1989; Różyczka et al. 1989; Davies et al. 1992; Ruffert 1993, to mention a
few), but clear and comprehensive predictions for their outcome are still miss-
ing. This is unfortunate because, in our models for galactic nuclei, collisions
between a MS star and a remnant occur at a rate comparable to collisions be-
tween two MS stars (a few 10−6 yr−1 in a Milky-Way-like nucleus, see Freitag
et al. 2006a). Finally, in young dense clusters, where mergers may contribute
to the formation of massive stars (m > 10M�) or lead to the build-up of very
massive stars (m > 100M�, e.g. Bally & Zinnecker 2005 and Sect. 5.4.1),
collisions involving pre-MS objects are likely, a type of event only simulated
very recently (Laycock & Sills 2005; Davies et al. 2006).5

Central Massive Object

To study the structure and evolution of galactic nuclei with a central mas-
sive black hole (MBH, MBH � 104 M�) or globular clusters hosting an

5For more pointers to the literature on stellar collisions and tidal
disruptions by a massive black hole, see the MODEST web pages at
http://www.manybody.org/modest/WG/wg4.html.

http://www.manybody.org/modest/WG/wg4.html


5 Monte-Carlo Models 137

intermediate-mass black hole (IMBH, 104 M� � MBH � 102 M�) or a very
massive star (M∗ � 200M�), the effects of a central massive object have been
included in the MC code (Freitag 2000; Freitag & Benz 2002; Freitag et al.
2006a; Freitag et al. 2006b). Here I concentrate on the case of an (I)MBH (see
Ferrarese & Ford 2005 for a review of the observational evidence for MBHs in
centres of galaxies and Miller & Colbert 2004, van der Marel 2004 for reviews
on the possible existence of IMBHs).

Recall that the MC approach is only valid for spherical systems in dy-
namical equilibrium and useful mostly if collisional effects such as two-body
relaxation produce noticeable evolution over the period of interest. Galactic
nuclei hosting MBH less massive than about 107 M� are probably relaxed
and therefore amenable to MC modelling. Indeed, assuming naively that the
Sgr A∗ cluster at the centre of our Galaxy is typical as far as the total stellar
mass and density are concerned (Genzel et al. 2003; Ghez et al. 2005; Schödel
et al. 2007) and that we can scale to other galactic nuclei using the observed
correlation between the mass of the MBH and the velocity dispersion of the
host spheroid, σ, in the form σ = σMW(MBH/4× 106 M�)1/β , with β ≈ 4− 5
(Ferrarese & Merritt 2000; Tremaine et al. 2002), we can estimate the relax-
ation time at the radius of influence (the limit of the region where the gravity
of the MBH dominates) to be trlx(Rinfl) ≈ 1010 yr (MBH/4 × 106 M�)(2−3/β).

All the key aspects of the interaction between the central MBH and its
host stellar system (“cluster” in short) are included in the MC code.

Gravity of the MBH. The contribution of the MBH is treated as a central,
fixed point mass. Newtonian gravity is assumed so the only modification in
computing the potential φ is to add MBH to the coefficients Ai in (5.11). The
MBH is allowed to grow by accretion of material from the stars or through an
ad hoc prescription to account for gas inflow. Care is taken to make the time
steps significantly shorter than φ(dφ/dt)−1 so as to ensure that the adiabatic
effects of the growth of the MBH on the cluster are accounted for (Young
1980; Quinlan et al. 1995). The MBH imposes very high stellar velocities in
its vicinity, causing stellar collisions to be more disruptive. The gas emitted in
a collision is assumed to accrete completely and immediately onto the MBH or
to accumulate in an unresolved disc around the MBH if its growth is limited
by the Eddington rate.

Tidal disruptions. A star of mass M∗ and radius R∗, which comes within
a distance Rtd = k R∗(MBH/M∗)1/3 of the MBH, is torn apart by the tidal
forces (e.g. Fulbright 1996; Diener et al. 1997; Ayal et al. 2000; Kobayashi
et al. 2004). Here k is a constant of order unity depending on the structure
of the star. In the present implementation, we assume that the tidal disrup-
tion is always complete and that a fixed fraction of the mass of the disrupted
star is accreted immediately, usually 50 per cent as suggested by most hy-
drodynamical simulations. The rest is lost from the cluster. These events are
predicted to trigger month- to year-long accretion flares in the UV/X domain
(Hills 1975; Rees 1988), some of which might have been detected already (see
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Komossa 2005 for a review and Gezari et al. 2006; Esquej et al. 2007 for recent
observations).

In a spherical galactic nucleus in dynamical equilibrium, the velocity vector
v of a star, at distance R from the MBH, has to point inside the loss cone,
in direction to or away from the centre, for its orbit to pass within Rtd. The
aperture angle of the loss cone, θLC, is given by the relation

sin2(θLC) = 2
(
Rtd

vR

)2 [
v2

2
+
GMBH

Rtd

(

1 − Rtd

R

)

+ Φ∗(R) − Φ∗(Rtd)
]

� 2
GMBHRtd

(vR)2
≈ Rtd

R
,

(5.25)

where Φ∗(R) = Φ(R) + GMBH/R is the cluster contribution to the gravita-
tional potential. The first approximation is valid as long as R � Rtd, which
is nearly always the case; the second is an order-of-magnitude estimate valid
within the sphere of influence of the MBH, where v2 ≈ GMBHR

−1.
Stars on loss-cone orbits are removed on an orbital time-scale. In a spher-

ical potential, it is generally assumed that loss-cone orbits are replenished
by two-body relaxation, but orbital perturbations by resonant relaxation (see
Sect. 5.4.2) or deflections by massive objects such as molecular clouds (Perets
et al. 2007) may play an important role. Barring such non-standard processes,
two loss-cone regimes can be distinguished (Frank & Rees 1976; Lightman &
Shapiro 1977; Cohn & Kulsrud 1978). (1) The loss cone is kept full and does
not induce any significant anisotropy in the velocity distribution when relax-
ation is strong enough to repopulate loss-cone orbits over an orbital time,
corresponding to the condition θ2

LCtrlx � Porb. For stars in this regime, which
typically occurs at large distances, the average time before tidal disruption is
of order tdisr,full � θ−2

LCPorb (when averaged over all directions of v). (2) The
loss cone is (nearly) empty in the opposite case, θ2

LCtrlx � Porb, and corre-
sponds to an absorbing region of phase space into which the stars diffuse. The
density of stars on orbits close to but out of the loss cone is reduced. In this
regime, it takes on average tdisr,empty � trlx ln(θ−2

LC) for a star to be disrupted.
Plunges through the horizon. The last stable parabolic orbit around a non-

spinning massive black hole corresponds to a (Newtonian) pericentre distance
RLSPO = 8GMBHc

−2. Sufficiently dense stars such as compact remnants have
a tidal disruption radius Rtd inside RLSPO (or even inside the horizon), mean-
ing that such objects will be swallowed whole rather than be tidally disrupted,
and produce no accretion flare.6 From the point of view of stellar dynamics,
this situation is identical to the case of tidal disruptions, with the quantity
Rtd replaced by RLSPO.

6In fact, when RLSPO > Rtd > Rhor = 2GMBHc−2, the star is disrupted before it
disappears through the horizon. To my knowledge, the detectability of such events
has not been investigated.
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Inspirals by emission of gravitational waves. Significant emission of grav-
itational waves (GWs) occurs during very close encounters with the MBH
(Peters & Mathews 1963). For a compact, massive stellar object on a very
eccentric orbit, GW emission may dominate orbital evolution over two-body
relaxation, yielding to progressive circularisation and shrinking of the semi-
major axis (Peters 1964) until it plunges through the horizon of the MBH
(or is tidally disrupted). For a 1–10M� object orbiting a MBH with a mass
between 104 and 107 M�, the final months or years of inspiral should be de-
tectable by the future spaceborn GW observatory LISA7 to distances of several
Gpc. Such extreme mass ratio inspirals (EMRIs) yield an unprecedented view
on the direct vicinity of MBHs. The promise for physics and astrophysics is as
exciting as the uncertainties about their physical rates and the challenges for
data analysis are high (see Amaro-Seoane et al. 2007 for an extensive review
of the various aspects of EMRI research).

I now explain in some detail how the loss-cone physics is implemented
in the MC code. This treatment is adequate only for the processes requir-
ing a single passage within a well-defined critical distance of the MBH to
be successful, such as tidal disruption, plunges or non-repeating GW bursts
emitted by stars on quasi-parabolic orbits (Hopman et al. 2007). In contrast,
an EMRI is a progressive process that will only be successful (as a poten-
tial source for LISA) if the stellar object experiences a very large number of
successive dissipative close encounters with the MBHs (Alexander & Hopman
2003). The ability of the MC approach to deal with this situation is discussed
in Amaro-Seoane et al. (2007).

At the end of the step in which two particles have experienced an encounter
(to simulate two-body relaxation), each particle is tested for entry into the
loss cone, J < JLC, where JLC = RV sin(θLC) �

√
2GMBHRtd (5.25). A

complication arises because the time step δt used in the MC code is a frac-
tion fδt = 10−3 − 10−2 of the local relaxation time trlx(R), which is much
larger than the critical timescale θ2

LCtrlx. In other words, the super-encounter
deflection angle θSE (5.3) is much larger than θLC. This keeps the loss cone
effectively and artificially full. However, in contrast with direct N -body sim-
ulations, this is not due to the overall relaxation rate being too large when
Np < N∗.

To treat the empty loss-cone regime in the most accurate fashion, we would
need to use time steps as short as the orbital period. Unfortunately, it is not
possible to give short time steps only to particles with eccentric orbits (and
hence at risk of entering the loss cone), because the time step is a function of
the positionR and cannot be attached to a particle. Hence, at least all particles
within the critical radius, defined by t̄disr,full(Rcrit) = t̄disr,empty(Rcrit), where
t̄ quantities are some local average, would need to have much shorter time
steps, which would slow down the code considerably. Instead, an approximate

7Laser Interferometer Space Antenna, see http://www.lisa-science.org.

http://www.lisa-science.org
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procedure is used to ensure that entry into the loss cone happens diffusively
when θ2

LCtrlx � Porb.
After the super-encounter deflection angle θSE has been computed (5.3)

and before the particles in the pair are given their new energies, angular mo-
menta and positions, we check each of them for entry into the loss cone in
the following manner. First, the orbital period is computed by integrating
(5.15) using Chebyshev quadrature (Press et al. 1992). We consider that dur-
ing Porb � δt, the direction of the velocity of the particle would have changed
by an r.m.s. angle θorb = (Porb/δt)1/2θSE. We then assume that the tip of the
velocity vector of the particle executes a random walk of NRW = δt/Porb sub-
steps of length θorb during δt. The modulus of the velocity is kept constant.
Entry into the loss cone is tested at each of these sub-steps. This random walk
is executed in the reference frame of the super-encounter, but independently
for each particle of the pair because they have different θorb and NRW. If a
particle is found on a loss-cone orbit, it is immediately removed and (part of)
its mass is added to the MBH. If the random walk never crosses into the loss
cone, the particle is kept and, in order to ensure exact energy conservation
the particle is given the velocity computed in the super-encounter, not that
reached at the end of the random walk. The random walk is a refinement of the
super-encounter from a statistical point of view but, because of its stochastic
nature, it cannot produce velocity vectors anti-parallel to each other for the
particles in a pair. This means that energy in the reference frame of the cluster
(as opposed to that of the pair) would not be conserved. It might be possi-
ble to improve this procedure by performing the random walk in the cluster
reference frame and leaving the particle with the velocity attained at the end
of it. This would permit us to obtain the correct decrease of density on the
orbits close to the loss cone.

In the context of loss-cone physics, I mention another type of Monte-Carlo
code developed by Shapiro and collaborators at Cornell University (Shapiro
1985, for a review and references). Their approach was essentially a hybrid
between that presented here, entirely based on particles and with no explicit
computation of diffusion coefficients and the direct Fokker–Planck integration
(Chap. 4). Instead of having particles interacting in pairs, their density in the
(E, J) phase space was tabulated in order to compute diffusion coefficients
used to modify their orbital parameters during the next global step. Within
a global step, each particle could be evolved independently of the others (and
on its own time step) until the updated phase-space density (and potential)
is recomputed. This permitted to endow the particles in or close to the loss
cone with time steps as short as their orbital time. Extending this scheme to a
multi-mass situation seems feasible without explicit use of an augmented (and
sparsely populated) (E, J,M∗) phase space. Unfortunately, to my knowledge,
such a development was not attempted.
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Binary Stars

The MC code presented so far in this chapter only deals with the dynamics
and evolution of single stars. This is a reasonable simplification as long as the
overall dynamics of galactic nuclei is concerned because in such environments
most binaries are very soft, meaning that their internal orbital velocity is much
smaller than velocity dispersion, at least in the vicinity of a MBH where the
density and interaction probability are the highest. However, binaries play
a major role in the evolution of globular clusters where the hard ones act
as an efficient central source of heat by being shrunk and eventually ejected
during interactions with other stars (Aarseth 1974; Spitzer & Mathieu 1980;
Gao et al. 1991; Hut et al. 1992; Heggie & Hut 2003; Giersz 2006; Fregeau
& Rasio 2007, amongst many others). For a given stellar density, binaries
also highly increase the rate of direct collision between stars (Portegies Zwart
et al. 1999; Portegies Zwart & McMillan 2002; Portegies Zwart et al. 2004;
Fregeau et al. 2004). Beside their dynamical role, binary interactions in dense
clusters are also of high interest as a way to create a whole zoo of “stellar
exotica” and phenomena, including blue stragglers, millisecond pulsars, and
mergers between compact stars as sources of supernovae, gamma-ray bursts
or gravitational waves (e.g. Hurley et al. 2001; Davies 2002; Shara & Hurley
2002; Benacquista 2006; Grindlay et al. 2006; O’Leary et al. 2007). Including
binaries in models of galactic nuclei is also important to explain X-ray observa-
tions at the Galactic centre (Muno et al. 2005), hyper-velocity stars (e.g. Hills
1988; Brown et al. 2005) and as a possible channel to create extreme-mass
ratio sources of gravitational waves for LISA (Miller et al. 2005).

Here I put aside the very thorny question of binary evolution and how
it might be affected by dynamics (see Chaps. 11 and 12) and concentrate
on the dynamical aspects. Binaries have been included in MC simulations
with various levels of sophistication (Spitzer & Mathieu 1980; Stodo�lkiewicz
1985, 1986; Giersz 1998, 2001, 2006; Giersz & Spurzem 2000, 2003; Fregeau
et al. 2003; Gürkan et al. 2006; Fregeau & Rasio 2007; Spurzem et al. 2006).
The approach of Fregeau & Rasio (2007) is based on our own treatment of
collisions and is the most direct and accurate one, at least when each particle
represents a single system (single star or binary). This treatment does not
include formation of binaries through three-body interactions (see the works
of Stodo�lkiewicz and Giersz).

To include binaries in a MC code, we first need to allow some of the
particles to represent binaries instead of single stars, which requires extra
data to keep track of the internal structure, masses and evolutionary phase of
the member stars, semi-major axis abin and eccentricity ebin. In the absence of
interaction with another star or binary, these parameters are updated by the
use of some binary evolution prescription. Then, similar to stellar collisions,
including binary dynamics amounts to (1) determining the probability of a
binary interaction Pbin between two neighbouring particle if at least one of
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them is a binary, (2) generating a random number Xrand and, if Xrand < Pbin,
(3) implementing a single–binary or binary–binary encounter.

Steps (1) and (2) are the same as in the implementation of collision between
single stars. Actually, at this level, binary interactions do not need to be
distinguished from stellar collisions. We only need to give to binaries a radius
ηabin where η > 1 is a safety factor to ensure that all interactions that can
perturb the binaries significantly are taken into account. Fregeau & Rasio
(2007) chose η = 2 and checked that a value η = 4 (which could cause the
time steps to be about twice as short) do not lead to statistically different
results, as far as the overall evolution of the cluster and binary population is
concerned. More complex forms of the criterion for the most distant encounter
to be included have been used by other authors (e.g. Bacon et al. 1996; Giersz
& Spurzem 2003). The simple rule described here, based on proximity at
the closest approach (when each binary is treated as a point mass) should
yield correct results if η is made sufficiently large but, in studies of small
perturbations to binaries (or planetary systems), it may be less than optimal
in the sense that large η values will yield small time steps. Indeed, for binaries,
we have to substitute ηabin for r in (5.23). Roughly speaking, with binaries
at the hard–soft boundary (Gmbina

−1
bin � σ2

v), the time step will be limited by
binary processes rather than by two-body relaxation if η > lnΛ.

Between interactions, binaries are treated as unperturbed and their prop-
erties are updated using binary evolution prescriptions. Note that this is also
the case in N -body codes unless another object comes within a distance
dpert = γ

−1/3
min (2mpert/mbin)1/3(1 + ebin)abin, where mpert is the mass of the

perturber and γmin is the tidal perturbation parameter (Aarseth 2003 and
Chap. 1). In most cases γmin is set to 10−6. Hence, in a similar-mass situa-
tion (mpert ≈ mbin) the N -body prescription corresponds to η ≈ 100 − 200
in the MC collision formalism. Whether this much more conservative condi-
tion yields significantly different results in the evolution of the binaries and
their host cluster has not been investigated in depth (see Giersz & Spurzem
2003; Spurzem et al. 2006 for some discussion). Incidentally, such research
may open the possibility of a more approximate but much faster treatment of
binary interactions in direct N -body codes.

The most direct and accurate (but also time-consuming) way of imple-
menting step (3), i.e. of determining the outcome of a binary encounter oc-
curring in a MC simulation, is to switch to a direct few-body integrator (see
Chap. 2 for algorithms). First, the quantities not specified by the MC parti-
cles have to be picked at random. These are the orbital phase(s) and orienta-
tion(s) and the impact parameter.8 One difficulty arises with binary–binary
encounters as they often result in the formation of a stable triple system. As

8In principle, we could keep track of the orbital phase of a binary between inter-
actions. However, the MC method relies on the assumptions that strong interactions
are rare and that binaries are much smaller than any length scale in the cluster. This
effectively randomises the orbital phase between interactions.
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mentioned by Giersz & Spurzem (2003) and Fregeau & Rasio (2007), it is in
principle possible to have some particles representing triples (or higher-order
stable groups) in the MC framework, with the appropriate book-keeping, but
this has not been implemented so far. Instead, triple systems are forcefully
broken apart into a binary and a single star just unbound to the binary. An-
other type of outcome that may require special treatment is the formation of
a very wide, soft binary with a size not much smaller than the typical size
of the cluster. Such pairs cannot be treated accurately in the MC formalism,
but they are unlikely to survive the next interaction so they can be artifi-
cially broken up without affecting the results. Finally, as mentioned above, it
is probably important to allow for direct collisions during binary interactions.
One source of uncertainty is the size of a merged star just after a collision. It is
likely to be several times the MS radius, leading to a significant probability of
a triple or quadruple collision (Goodman & Hernquist 1991; Lombardi et al.
2003; Fregeau et al. 2004).

Once the outcome of a binary–single or binary–binary interaction has been
determined, the products of the interaction are turned back into MC particles
representing single or binary stars with the adequate internal and orbital
properties and a position in the cluster is selected for each according to the
procedure presented in Sect. 5.3.1.

Integrating the few-body encounters in a cluster with a large fraction of
binaries can account for a significant fraction of the computing time. A much
faster way to deal with binary dynamics is to use “recipes”, which are fitting
formulae for the cross section and outcome of interactions based on large pre-
computed sets of scattering experiments (e.g. Heggie 1975; Hut 1993; Heggie
et al. 1996). However, for stars of unequal masses, the parameter space is too
vast to be reliably covered by such recipes. Even in the idealised case where all
stars have the same mass, for which comprehensive binary-interaction cross
sections are available, the use of such recipes rather than explicit few-body
integrations seems to yield quantitatively inaccurate results (Fregeau et al.
2003; Fregeau & Rasio 2007).

Other Physical Ingredients

MC codes can include a few other physical processes that I describe more
succinctly.

Stellar evolution – Evolution of stars (single or binaries) can be taken into
account with various levels of refinement. In our MC code, a very simple pre-
scription is used, which assumes that a star of initial mass M∗ spends a time
tMS(M∗) on the MS without any evolution and abruptly turns into a compact
remnant at the end of this period. Thus the giant phase is neglected. The
relation tMS(M∗) and the prescriptions for the nature and mass of the rem-
nant are taken from stellar evolution models (Hurley et al. 2000; Belczynski
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et al. 2002). To ensure that stellar evolution time-scales are resolved, a sup-
plementary constraint on the time step is introduced, δti ≤ fδt,∗t∗,i, where
t∗,i is an estimate for the stellar evolution time-scale of stars at rank i and
fδt,∗ = 0.025 typically. In the present implementation, t∗,i is simply the MS
lifetime of the particle, which has rank i at the moment the time steps are
computed. Because we use a piecewise constant representation of δt, the time
step will generally be shorter than a fraction fδt,∗ of the smallest local value of
tMS. Once a pair of particles is selected, it is first checked for stellar evolution
and its masses and radii are updated if required, before the super-encounter
(or collision) is carried out. Natal kicks can be given to newborn neutrons
stars and black holes (Freitag et al. 2006a).

This simplistic treatment can be improved by the use of detailed stel-
lar evolution packages (Portegies Zwart & Verbunt 1996; Portegies Zwart &
Yungelson 1998; Hurley et al. 2000, 2001. See also Chaps. 10 and 13). A diffi-
culty to confront, however, is that this will involve shorter time-scales t∗, e.g.
to resolve the giant phase. In general, stars with short t∗ can be found any-
where in a cluster, imposing (unlike relaxation or collision) uniformly short
time steps. This could be prevented by using a time-stepping scheme for stel-
lar evolution independent of the dynamical one. For instance, using a heap
structure (Press et al. 1992), we could keep track of the next particle requir-
ing update of its stellar parameters and realise this update when due, without
changing the orbital parameters (except if a natal kick is imparted).

Large-angle scatterings – Gravitational encounters between stars of mass
m1 and m2 at a relative velocity vrel with an impact parameter smaller than
a few b0 ≡ G(m1 +m2)v−2

rel lead to deflection angles too large to be accounted
for in the standard, diffusive theory of relaxation. On average, a star will
experience an encounter with impact parameter smaller than fLAb0 (with
fLA of order a few) over a time-scale

tLA �
[
π(fLAb0)2nσ

]−1 ≈ lnΛ
f2
LA

trlx. (5.26)

The effects of large-angle scatterings on the overall evolution of a cluster
are negligible in comparison with diffusive relaxation (Hénon 1975; Goodman
1983). However, unlike the latter process, they can produce velocity changes
strong enough to eject stars from an isolated cluster (Hénon 1960, 1969;
Goodman 1983) or, more important, from the region of influence around a
MBH (Lin & Tremaine 1980; Baumgardt et al. 2004; O’Leary & Loeb 2008).
Large-angle scatterings are easily included in MC simulations as a special case
of collision, with a cross section π(fLAb0)2 (Freitag et al. 2006a), but the time
steps will be limited by this (rare) process rather than by diffusive relaxation
for fLA � 4.

Tidal evaporation – Stellar clusters are subject to the tidal influence of their
host galaxy. Assuming spherical symmetry, the MC code cannot deal with the
galactic field accurately but it is easy to include in an approximate way the
most important effect, which is the evaporation of stars from the cluster.
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A star can escape from a cluster on a circular orbit of radius RG around a
spherical host galaxy if its orbit allows it to reach the Lagrange point away
from or in the direction of the galaxy. These locations are approximately at
a distance RL = RG(Mcl/(2MG))1/3 from the cluster’s centre, where Mcl and
MG are the masses of the cluster and a point-mass galaxy, respectively. In the
spherical approximation, we assume that a star escapes when its apocentre
distance is larger than RL. As the total mass of the cluster decreases, the value
of RL is adjusted. This can lead to more stars being lost if their apocentre
distances happen to lie beyond the new RL value, so we have to iterate until
convergence is reached for the bound mass of the cluster. Using such treatment
of tidal evaporation, combined with a prescription for the orbital decay of the
cluster owing to dynamical friction, Gürkan & Rasio (2005) have simulated
the internal and orbital evolution of clusters at the Galactic centre.

5.4 Some Results and Possible Future Developments

Monte-Carlo codes have been used in a variety of problems involving the
collisional evolution of globular clusters and galactic nuclei. I do not attempt
to review this variety of works but invite the reader to sample the references
cited in Sect. 5.1. Here I limit myself to the quick presentation of a few typical
results to give a flavour of the capabilities of the method.

5.4.1 Young Clusters and Globular Clusters

In Figs. 5.3 and 5.4, I show the evolution to core collapse of single-mass and
multi-mass Plummer models, computed with the MC code described here with
no other physics than two-body relaxation. I compare with direct Nbody4

results (H. Baumgardt 2005, personal communication). Provided the value
of γc needed to convert N -body time units (see Chap. 1) to relaxation time
is adjusted in an ad hoc fashion, very good agreement between the methods
is obtained for these cases. We find γc � 0.15 for the single-mass model
and γc � 0.03 for Salpeter mass function (dN∗/dM∗ ∝ M−2.35

∗ ) extending
from 0.2 to 10 M�, in agreement with theoretical expectations and previous
numerical determinations (Hénon 1975; Giersz & Heggie 1994, 1996; Freitag
et al. 2006c). We note that in N -body simulations core collapse is always
halted and reversed by the formation and hardening of binaries through close
three-body interactions (e.g. Aarseth 1971; Heggie & Hut 2003), a process not
included in the MC code. When the mass function is extended to 120M�, the
agreement between MC and N -body simulations is poorer but the time to
core collapse is found to be approximately the same, in terms of relaxation
time, namely a surprising 10–20 per cent of the initial central relaxation time
(Spitzer 1987),

trc(0) ≡ 0.339
σ3

v

lnΛG2〈m〉2n, (5.27)
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Fig. 5.3. Core collapse of a single-mass cluster initialised as a Plummer model.
The results of the MC code using 250 000 particles, in solid lines, are compared
to a direct Nbody4 simulation using 64 000 particles, in dashes (H. Baumgardt
2005, personal communication). Top panel: evolution of radii of the Lagrangian
spheres containing the indicated fraction of the mass. Bottom panel: evolution of
the anisotropy parameter, averaged over Lagrangian shells bounded by the indicated
mass fractions. The length unit is the N -body scale (see Chap. 1). The time unit is
the initial half-mass relaxation time (Spitzer 1987). To convert the dynamical time
units of the N -body simulation to a relaxation time, a value of γc = 0.15 was used
for the Coulomb logarithm
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Fig. 5.4. Core collapse of a Plummer cluster with 0.2–10 M� Salpeter mass function.
A MC code simulation with 106 particles, in solid lines, is compared to a direct
Nbody4 simulation with 256 000 particles, in dashes (H. Baumgardt 2005, personal
communication). To show mass segregation, the evolution of Lagrangian radii is
plotted for mass fractions of 1 and 50 per cent for stars with masses within five
different bins. To convert the dynamical time units of the N -body simulation to a
relaxation time, a value of γc = 0.03 was used for the Coulomb logarithm. Compare
with Fig. 4.1

where the quantities 〈m〉, n and σv are determined at the centre. This is
a result of great interest as it raises the possibility of triggering a phase of
runaway collisions in young dense clusters (Quinlan & Shapiro 1990; Portegies
Zwart et al. 1999; Portegies Zwart & McMillan 2002; Gürkan et al. 2004;
Portegies Zwart et al. 2004; Freitag et al. 2006b,c).

A domain where MC simulations are bound to play a unique role in the
next few years is the evolution of large clusters with a high fraction of pri-
mordial binaries. This is one of the most challenging situations for direct
N -body codes because the evolution of regularised binaries cannot be com-
puted on special-purpose GRAPE hardware. At the time of writing, the pub-
lished N -body simulations tallying the largest number of binaries are those by
Hurley et al. (2005) with 12 000 binaries amongst 36 000 stars and by Portegies
Zwart et al. (2007) with 13 107 binaries amongst 144 179 stars. In contrast,
Fregeau & Rasio (2007) present tens of MC simulations for 105 particles, some
with 100 per cent binaries and a few 3×105 particle cases with up to 1.5×105

binaries (see also Gürkan et al. 2006). Although single and binary stellar evolu-
tion were not included in these simulations, they can be incorporated into MC
codes in the same way and with the same level of realism as in direct N -body
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Fig. 5.5. Evolution of a cluster containing 30 per cent of (hard) primordial binaries
(J. Fregeau 2007, personal communication). The cluster is set up as a Plummer
model of 105 particles, with masses distributed according to a Salpeter IMF between
0.2 and 1.2 M�. Stellar evolution is not simulated. Top panel: total cluster mass
(dashed line) and mass in binaries (dot-dashes), normalised to the initial values.
Bottom panel: core radius (solid line), half-mass radius of single stars (dashes) and
half-mass radius of binaries (dot-dashes), in N -body units. Time is in units of the
initial half-mass relaxation time. For more information on this work, see Fregeau &
Rasio (2007)

codes. In Fig. 5.5, I show the results from a simulation of a cluster with
30 per cent primordial binaries, i.e. Nbin/(Nbin + Nsingle) = 0.3 (J. Fregeau
2007, personal communication). Binaries stabilise the core against collapse for
a duration of tens of half-mass relaxation times, corresponding to more than
the Hubble time when applied to real globular clusters. The quasi-equilibrium
size of the core, maintained during this long phase of binary burning appears
to be too small to explain the observed core size of most non-collapsed Galac-
tic clusters. It is not yet clear whether this discrepancy is to be blamed on
the neglect of stellar evolution and other well-known physical effects (colli-
sions, non-stationary Galactic tides, etc.) or can only be resolved by assuming
some more exotic physics such as the presence of IMBHs in many clusters
(Baumgardt et al. 2005; Miocchi 2007; Trenti et al. 2007), but it seems that
MC simulations are the ideal tool to investigate this issue.
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Monte-Carlo codes that treat the dynamics and evolution of single and
binary stars in great detail should be available very soon, allowing the simula-
tion of clusters containing up to 107 stars on a star-by-star basis with a high
level of realism as long as the assumptions of spherical symmetry and dynam-
ical equilibrium are justified. I now mention a few strong motivations to try
and extend the realm of MC cluster simulations beyond these assumptions.

• Galactic tides. The treatment of stellar evaporation from a cluster can be
improved significantly. First, stars have to find the narrow funnels around
the Lagrange points to exit the cluster (e.g. Fukushige & Heggie 2000;
Ross 2004). Hence it takes a star several dynamical times to find the
“exit door”, even when some approximate necessary condition for the es-
cape is reached, such as an apocentre distance (in the spherical potential)
larger than the distance to the Lagrange point. Therefore, a significant
fraction of the stars in a cluster can be potential escapers (Fukushige &
Heggie 2000; Baumgardt 2001). Using (semi)analytical prescriptions from
the cited studies, one could take this effect into account in MC simula-
tions by giving potential escapers a finite lifetime before they are actually
removed from the cluster (see Takahashi & Portegies Zwart 2000 for a
similar approach applied to Fokker–Planck simulations). Other important
effects of the galactic gravitational field absent from MC simulations (and
most other cluster simulations) come from its non-steadiness. A cluster on
an eccentric orbit experiences a stronger tidal stress at pericentre, an ef-
fect dubbed bulge shocking while compressive disc shocking happens when
the cluster crosses the plane of the galactic disc (e.g. Spitzer 1987; Gnedin
& Ostriker 1997; Baumgardt & Makino 2003; Dehnen et al. 2004). Such
effects can be included in MC codes using the same (semi)analytical pre-
scriptions as in some Fokker–Planck integrations (Gnedin & Ostriker 1997;
Gnedin et al. 1999). Alternatively, because shocking occurs on a time-scale
much shorter than the relaxation time, we could switch back and forth be-
tween a fast, non-collisional N -body algorithm (such as Superbox, see
Chap. 6) to compute the effects of the shocks and a MC code to evolve
the cluster between shocks. Another possibility would be a hybrid non-
spherical MC/N -body method, suggested in the next point.

• Rotating clusters. Observational evidence and theoretical models indicate
that clusters may be born with significant rotation, possibly as a result
of the merger of two clusters (see references in Amaro-Seoane & Freitag
2006). The MC approach exposed here is not appropriate to study non-
spherical systems but, as already suggested by Hénon (1971a), it might be
possible to develop a hybrid approach where a collisionless N -body code
is used for fast orbit sampling in a non-spherical geometry (by actual or-
bital integration!) and collisional effects are included explicitly in a MC
fashion, by realising super-encounters between neighbouring pairs. A com-
bination of the Self-Consistent Field N -body method with Fokker–Planck
relaxation terms was developed by S. Sigurdsson to study the evolution
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of globular clusters orbiting a galaxy (Johnston et al. 1999) but, to my
knowledge, no MC/N -body hybrid has ever been developed. Such a code
would also be of great interest in the study of galactic nuclei, as mentioned
in Sect. 5.4.2.

• Primordial gas. Observations show that when a cluster forms, not more
than 30 per cent of the gas is eventually turned into stars (Lada 1999).
In relatively small clusters, the gas is expelled by the ionising radiation
and winds of OB stars within the first 1–2 Myr. In clusters with an escape
velocity larger than about ∼ 10 km s−1, complete expulsion of the gas
probably only occurs when the first SN explodes (Kroupa et al. 2001; Boily
& Kroupa 2003a,b; Baumgardt & Kroupa 2007 and references therein. See
also Sect. 7.4). When still present in the cluster, the gas dominates the
gravitational potential. Furthermore, it can strongly affect the orbits and
mass of stars as they accrete and slow down to conserve momentum, thus
shaping the mass function and producing strong segregation (Bonnell et al.
2001a,b; Bonnell & Bate 2002). Such effects can be included in MC codes
if the gas is treated as a smooth, parametrised component. However, to
follow the reaction of the cluster to the fast gas expulsion, we would have
to switch to a (collisionless) N -body code or Spitzer-type dynamical MC
scheme because the Hénon algorithm can only treat adiabatic potential
evolution.

5.4.2 Galactic Nuclei

In addition to the study of globular and young clusters, the MC code is also a
method of choice for the study of small galactic nuclei (Freitag 2001; Freitag
& Benz 2001a,b, 2002; Freitag 2003; Freitag et al. 2006a). Massive black holes
(MBHs) less massive than about 107 M� are probably generally surrounded
by a stellar nucleus with a relaxation time shorter than 1010 yr at the distance
where the mass in stars is equal to the mass of the MBH (e.g. Lauer et al.
1998; Genzel et al. 2003; Freitag et al. 2006a; Merritt & Szell 2006). Although
direct N -body codes with GRAPE hardware can now be used to study some
important aspects of the collisional evolution of galactic nuclei (Preto et al.
2004; Merritt & Szell 2006; Merritt et al. 2007b), they are still limited to
� 106 particles for this kind of application, which falls short of the number of
stars in galactic nuclei.

In Fig. 5.6, I show the evolution of a small galactic nucleus, computed with
the MC code described in this chapter. In addition to two-body relaxation, the
physics include the effects of a (growing) central MBH (tidal disruption, direct
mergers for objects too compact to be disrupted) and stellar collisions. Large-
angle scatterings were found to be of secondary importance for such systems
and stellar evolution can be taken into account, but this raises the question
of how much gas from stellar evolution will be accreted by the MBH (Freitag
et al. 2006a). For the model presented, segregation of stellar-mass black holes
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d
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Fig. 5.6. Evolution of the model for a small galactic nucleus hosting a MBH with
a mass of 3.5× 104 M� with 2.1× 106 particles (model GN84 of Freitag et al. 2006a).
Top panel: evolution of Lagrangian radii for the various stellar species (MS: main-
sequence, WD: white dwarfs, NS: neutron stars, BH: stellar black holes). The stellar
population has a fixed age of 10 Gyr. Bottom panel: accretion of stellar material by
the MBH. For tidal disruptions, 50 per cent of the mass of the star is accreted.
“Mergers” are events in which an object crosses the horizon whole. Collisions be-
tween MS stars are also taken into account with all the released gas being accreted
by the MBH
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to the centre occurs within some 50 Myr, after which their swallowing by the
MBH drives the expansion of the nucleus. For models with parameters per-
taining to the Milky Way nucleus, mass segregation takes about 3–5 Gyr and
only little expansion occurs in a Hubble time. The segregation of stellar black
holes is of key importance for the formation of EMRI sources for LISA (Hop-
man & Alexander 2006b; Amaro-Seoane et al. 2007, and references therein).

Simulations of galactic nuclei have not yet reached as high a level of realism
as one might wish. Several aspects of the physics are still laking, including the
following elements.

• Binary stars. Binary stars are probably not effective as a source of heat be-
cause the ambient velocity dispersion is so high in galactic nuclei. However,
this population is of interest in its own right as mentioned in Sect. 5.3.2.

• Resonant relaxation. Close to the MBH, stars travel on approximately fixed
Keplerian orbits exerting torques on each other, causing the eccentricities
to fluctuate randomly on a time-scale shorter than that of standard two-
body relaxation (Rauch & Tremaine 1996). This might affect moderately
the rate of tidal disruptions (Rauch & Ingalls 1998) and very significantly
that of EMRIs (Hopman & Alexander 2006a) but, being an intrinsically
non-local effect, it can probably only be included in an approximate fashion
in MC models.

• Motion of the central MBH. Direct N -body simulations have established
the importance of MBH wandering (e.g. Merritt et al. 2007, and references
therein). Because this is a dynamical, non-spherical perturbation to the
idealised cluster representation used in the MC approach, it can only be
included through ad hoc prescriptions determining, for example, the prob-
ability for a star to be tidally disrupted. It is not yet clear whether the
wandering would affect the results appreciably and justify such modifica-
tions to the MC code.

• Interplay between accretion disc and stars. The orbits of stars repeatedly
impacting a dense disc tend to align with it (e.g. Syer et al. 1991; Šubr et al.
2004; Miralda-Escudé & Kollmeier 2005). Stars may therefore be a major
contributor to nuclear activity and the growth of SMBHs. Testing this idea
is challenging since what is required is a numerical scheme coupling stellar
dynamics for several millions of stars, disc physics and some prescription
for the stellar and orbital evolution of the stars embedded in the disc. A
non-spherical hybrid MC/N -body code, as suggested above, could form
the backbone of this complex scheme.

• Binary massive black hole. Galaxy mergers lead to the formation of massive
binaries, the evolution and fate of which is still debated. The key question
is whether interactions with stars and gas are efficient at shrinking the
binary to the point where it merges by the emission of gravitational waves
(Begelman et al. 1980; Merritt & Milosavljević 2005; Berczik et al. 2006;
Merritt 2006; Sesana et al. 2007, amongst others). If the binary instead
stalls for a very long time, the next galactic merger can bring about a
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highly dynamical three-body interaction involving MBHs, likely to lead to
a merger and the ejection of a single MBH (Hoffman & Loeb 2007). If the
parent galaxies are devoid of gas, once its separation has become smaller
than about ∼ 4Gμ/σ2, where μ is the reduced mass and σ the stellar veloc-
ity dispersion, the MBH binary can only shrink by ejecting passing stars
out of the nucleus. These interactions also determine the evolution of the
eccentricity, which might play a key role in bringing the binary to coales-
cence. While only N -body methods can implement the non-symmetrical
geometry of this situation (e.g. Mikkola & Aarseth 2002), they cannot
include the > 107 stars present in even a moderately small nucleus. An
axially symmetrical (hybrid) MC code would make it possible to simulate
the interaction of a massive binary with its host nucleus employing a real-
istic mass ratio between the stars and the MBHs and, hence, the correct
rate of relaxation into the loss cone for interaction with the massive binary.
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Hénon M., 1971a, Ap&SS, 14, 151 123, 149
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6.1 Introduction

Many problems in astronomy ranging from celestial mechanics via stellar dy-
namics to cosmology require the solution of Newton’s laws:

F = a ·m = m
dv

dt
(6.1)

v =
dr

dt
, (6.2)

where F is the gravitational force of all other (N − 1) masses,

F j =
N∑

i=1,i �=j

Gmjmi

r3ij
rij (6.3)

acting on mass j (index ij denotes the vectors connecting particle i and j).
While there is an analytical solution for the two-body system, systems

involving three or more masses do not have an analytical solution. Thus com-
puter simulations of the time-evolution of multi-body systems are very com-
mon in astronomy.

The tools used for these purposes are diverse and widely range from high-
precision integrators for the dynamics of the planetary systems to programmes
using up to a billion particles to investigate the structure formation in the
universe. This article focuses on the particle-mesh technique and a programme
to simulate galaxies called Superbox.

The particle-mesh (PM) technique is explained in Sect. 6.2. Then the
multi-grid structure of Superbox is described in Sect. 6.3.
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6.2 Particle-Mesh Technique

6.2.1 Overview

In the particle-mesh technique, the density of the particles is sampled on a
grid covering the simulation area and then Poisson’s equation

∇2Φ = 4πG� (6.4)

is solved on the grid-based density using a suitable Green’s function to derive
the grid-based gravitational potential. Particles are integrated using the forces
derived from this grid-based potential.

The first step is to locate the grid-point of each particle according to
its position and derive a grid of densities. This density-grid is Fourier-
transformed via the Fast Fourier Transform(FFT) algorithm. This requires
that the number of grid-cells per dimension is a power of 2. The Fourier-
transformed density-grid is multiplied cell-by-cell with a suitable, already
Fourier-transformed Green’s function. Then these values are back-transformed,
which results in a grid of potential values. From these potential values the
forces of each particle are derived via discrete differentiation. Finally, the par-
ticle velocities and positions are integrated forward in time.

A flow-chart of a standard PM-code is shown in Fig. 6.1.

read input data

forward FFT of Green’s Function

start time−step loop

derive grid−based density array

forward FFT of density array

cell−by−cell multiplication with Green’s Fkt. 

backward FFT to derive potential array

start particle loop

differentiate potential to get force

integrate velocities

integrate positions

collect output data

write final data

Fig. 6.1. Flow-chart of a standard PM-code



6 Particle-Mesh Technique and Superbox 161

6.2.2 Suitable Green’s Function

The usual geometry of the grid in a particle-mesh code is Cartesian and cu-
bic. Therefore, the standard Green’s function, which describes the distances
between cells, looks like

Hi,j,k =
1

√
i2 + j2 + k2

, i, j, k = 0, . . . , n

H0,0,0 =
1
ξ
. (6.5)

This formula implies that the length of one grid-cell is unity, n is the number
of grid-cells per dimension and has to be a power of 2.

The value for H0,0,0 has to be chosen carefully. It describes the strength of
the force between particles in the same cell, including the non-physical ‘self-
gravity’ of the particle acting on itself. In the one-dimensional case, analytical
studies by D. Pfenniger showed a value of ξ = 3/4 gives the best results in
terms of energy conservation. Numerical experiments showed that this is also
true in the three-dimensional case.

Nevertheless, in the case of very low particle numbers per cell this value
could lead to spurious self-accelerations and a value that excludes the forces
of particles from the same cell would be more suitable. In the Superbox

differentiation scheme the value to exclude self-gravity is ξ = 1. In a later
section, we discuss why one should avoid low particle-per-cell ratios if possible.

Finally, it can be stated that the grid-array of the Green’s function has
to be set up and Fourier-transformed only once at the beginning of each
simulation and can then be used throughout the whole simulation.

6.2.3 Deriving the Density-Grid

The actual positions and velocities of each particle (x, y, z, vx, vy, vz) are stored
in the particle array. From the actual positions the grid-cell in which each
particle is located is derived via

ix = nearest integer(enh · x) + n/2. (6.6)

ix denotes the grid-cell number in the x-direction, enh is a numerical factor
that stretches or compresses the physical extension of the x-direction of the
simulation area to allow the grid-cell length to be unity. The grid-cell numbers
in the y- and z-direction are derived accordingly.

There are two possibilities to assign the mass of the particle to the density-
grid covering the simulation area. One is called nearest-grid-point scheme, and
assigns the whole mass of the particle to the grid-cell that the particle is in.
A second, more advanced procedure is called cloud-in-cell scheme and assigns
a radius of half a cell length to each particle. The mass of the particle is now
distributed to the cells, this extended particle is in, according to the actual
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1
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n

1 3

ix

iy  +mass

grid of densities

1

2

3

4

5

N

x z vx vy vz

array of particles

ix = nint(enh*x + n/2)

iy = nint(enh*y + n/2)

y

n2

Fig. 6.2. Deriving the density-grid from the particle positions. The z-dimension
is omitted for clarity. In the NGP scheme, the total mass is placed in one cell; in
the CIC scheme, contributions of the mass are distributed in neighbouring cells also
(denoted by the circle)

deviation of the particle position from the centre of the cell. In Fig. 6.2 this
assignment is shown for two dimensions.

The CIC scheme allows for a much smoother distribution of the densities
but does not allow for sub-cell-length resolution. This has to be added via di-
rect summation of the forces of neighbouring particles within a certain sphere
of influence. A code that employs direct summation in the vicinity of each
particle is usually called P3M-code (particle-particle particle-mesh). The CIC
scheme also allows for a smooth and high accuracy derivation of the forces
(this will be discussed in a sub-section below).

Superbox still uses the ‘old-fashioned’ NGP-scheme, which results in a
much faster assignment of the densities and allows for sub-cell-length resolu-
tion, if H0,0,0 	= 1. To reach the high accuracy, we later apply a higher-order
differentiation scheme to obtain the forces.

6.2.4 The FFT-Algorithm

Poisson’s equation is solved for the density-grid to get the grid-based potential,
Φijk, which becomes,

Φijk = G
n−1∑

a,b,c=0

�abc ·Ha−i,b−j,c−k, i, j, k = 0, . . . , n− 1, (6.7)

where n denotes the number of grid-cells per dimension (n3 = Ngc total
number of grid-cells), and Hijk is the Green’s function. To avoid this N2

gc pro-
cedure, the discrete Fast Fourier Transform (FFT) is used, for which n = 2k,
k > 0 being an integer. The stationary Green’s function is Fourier-transformed
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once at the beginning of the calculation, and only the density array is trans-
formed at each time-step:

�̂abc =
n−1∑

i,j,k=0

�ijk · exp
(

−
√
−1

2π
n

(ai+ bj + ck)
)

Ĥabc =
n−1∑

i,j,k=0

Hijk · exp
(

−
√
−1

2π
n

(ai+ bj + ck)
)

. (6.8)

The two resulting arrays are multiplied cell by cell and transformed back to
get the grid-based potential,

Φijk =
G

n3

n−1∑

a,b,c=0

�̂abc · Ĥabc · exp
(√

−1
2π
n

(ai+ bj + ck)
)

. (6.9)

The FFT-algorithm gives the exact solution of the grid-based potential for a
periodic system. For the exact solution of an isolated system, which is what
simulators are interested in, the size of the density array has to be doubled
(2n), filling all inactive grid cells with zero density and extending the Green’s
function in the empty regions in the following way (also shown in Fig. 6.3):

H2n−i,j,k = H2n−i,2n−j,k = H2n−i,j,2n−k = H2n−i,2n−j,2n−k

= Hi,2n−j,k = Hi,2n−j,2n−k = Hi,j,2n−k = Hi,j,k. (6.10)

This provides the isolated solution of the potential in the simulated area be-
tween i, j, k = 0 and n − 1. In the inactive part the results are unphysical.
To keep the data size as small as possible, only a 2n × 2n × n-array is used
for transforming the densities, and a (n+ 1)× (n+ 1)× (n+ 1)-array is used
for the Green’s function. For a detailed discussion see Eastwood & Brownrigg
(1978) and also Hockney & Eastwood (1981).

The FFT-routine incorporated in Superbox is a simple one-dimensional
FFT and is taken from Werner & Schabach (1979) and Teukolsky et al. (1992).
It is fast and makes the code portable and not machine-specific. The low-
storage algorithm for extending the FFT to three dimensions, to obtain the
3-D potential, is taken from Hohl (1970). The performance of Superbox can
be increased by incorporating machine-optimised FFT routines.

A detailed description of the low-storage FFT algorithm used in Super-

box can be found in the manual available directly from the author (Fellhauer
2006).

6.2.5 Derivation of the Forces

After the FFT procedure has been completed, one has a grid-based potential
of the simulation area. From this potential, the forces acting on each particle
are derived via discrete numerical differentiation of the potential.
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simulated object

active simulation area

empty ghost region empty ghost region

empty ghost region

1 3 ... n n+1 ... 2n

grid−array rho not existent as array

not existent as arraynot existent as array

2

Fig. 6.3. Virtual extension of the simulation area to provide isolated solution
(z-direction omitted)

As with the mass assignment of the density array, the forces are also cal-
culated differently depending on whether a NGP or CIC scheme is used. A
NGP scheme only uses the force calculated for the grid-cell the particle is
in, while in a CIC scheme forces of the neighbouring cells are used with the
same weights the mass was distributed to interpolate the force to the particle
position.

For simplicity, the force derivation of the different schemes is given in a
1D case:

NGP : a(xi + dx) =
∂Φ
∂x

∣
∣
∣
∣
i

(6.11)

SUPERBOX : a(xi + dx) =
∂Φ
∂x

∣
∣
∣
∣
i

+
∂2Φ
∂x2

∣
∣
∣
∣
i

· dx
Δx

(6.12)

CIC : a(xi + dx) =
∂Φ
∂x

∣
∣
∣
∣
i

· Δx− dx
Δx

+
∂Φ
∂x

∣
∣
∣
∣
i+1

· dx
Δx

, (6.13)

where a denotes the acceleration, xi is the position of the cell with index i the
particle is located in and dx is the deviation of the particle from the centre
of the cell. As one can see, the standard NGP scheme does not account for
the deviation of the particle from the centre of the cell. The acceleration is
a step function from cell to cell and is not steady at all. The CIC scheme
accounts for this deviation and the acceleration of the particle is a weighted
mean from the cell the particle is in and the neighbouring cell. Superbox has
a non-standard force calculation scheme, which is definitely NGP in nature
(only the force for the cell i is used), but accounts for the deviation by using
the next term of a Taylor series of the acceleration around the cell i. The
steadiness of the force is not guaranteed when crossing the cell boundaries at
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an arbitrary angle, but anisotropies of the force are suppressed. The full 3D
expression for the acceleration in Superbox is

aijk,x(dx,dy,dz) =
∂Φ
∂x

∣
∣
∣
∣
i,j,k

+
∂2Φ
∂x2

∣
∣
∣
∣
i,j,k

dx+
∂2Φ
∂x∂y

∣
∣
∣
∣
i,j,k

dy +
∂2Φ
∂x∂z

∣
∣
∣
∣
i,j,k

dz

(6.14)

The partial derivatives are replaced in the code by second-order central dif-
ferentiation quotients and now the 3D expression for the acceleration in the
x-direction reads

aijk,x(dx,dy,dz) =
Φi+1,jk − Φi−1,jk

2Δx

+
Φi+1,jk + Φi−1,jk − 2 · Φijk

(Δx)2
· dx

+
Φi+1,j+1,k − Φi−1,j+1,k + Φi−1,j−1,k − Φi+1,j−1,k

4ΔxΔy
· dy

+
Φi+1,j,k+1 − Φi−1,j,k+1 + Φi−1,j,k−1 − Φi+1,j,k−1

4ΔxΔz
· dz (6.15)

Note that generally Δx = Δy = Δz = 1, i.e. the cell-length is assumed to be
equal along the three axes and unity; i, j, k are the cell indices of the particle
in the three Cartesian coordinates. The accelerations in y- and z-direction are
calculated analogously.

6.2.6 Integrating the Particles

The orbits of the particles are integrated forward in time using the leapfrog
scheme. For example, for the x-components of the velocity, vx, and position,
x, vectors of particle l,

v
n+1/2
x,l = v

n−1/2
x,l + an

x,l · Δt

xn+1
l = xn

l + v
n+1/2
x,l · Δt, (6.16)

where n denotes the nth time step and Δt is the length of the integration
step.

Superbox uses a fixed global time step, i.e. the time step is the same for
all particles and does not vary in time.

The leapfrog integrator together with the fixed time step is very fast (no
decision-making necessary) and is accurate enough for a grid-based code. It is
in principle time-reversible and has very good energy conservation properties
considering its simplicity.
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6.3 Multi-Grid Structure of SUPERBOX

A detailed description of the code is also found in Fellhauer et al. (2000). For
each galaxy, five grids with three different resolutions are used. This is made
possible by invoking the additivity of the potential (Fig. 6.4).

The five grids are as follows:

• Grid 1 is the high-resolution grid that resolves the centre of the galaxy. It
has a length of 2×Rcore in one dimension. In evaluating the densities, all
particles of the galaxy within r ≤ Rcore are stored in this grid.

• Grid 2 has an intermediate resolution to resolve the galaxy as a whole.
The length is 2 × Rout, but only particles with r ≤ Rcore are stored here,
i.e. the same particles as are also stored in grid 1.

• Grid 3 has the same size and resolution as grid 2, but it contains only
particles with Rcore < r ≤ Rout.

• Grid 4 has the size of the whole simulation area (i.e. ‘local universe’ with
2 × Rsystem), and has the lowest resolution. It is fixed. Only particles of
the galaxy with r ≤ Rout are stored in grid 4.

RoutRout

Grid 4 Grid 5

Rout Rout

Rcore

RcoreRcore

Rcore

Rsystem

RsystemRsystem

Rsystem

G
rid

 1

G
rid

 2

Grid 1 + 2 Grid 3

Fig. 6.4. The five grids of Superbox. In each panel, solid lines highlight the relevant
grid. Particles are counted in the shaded areas of the grids. The lengths of the arrows
are (N/2)−2 grid-cells (see text). In the bottom left panel, the grids of a hypothetical
second galaxy are also shown as dotted lines
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• Grid 5 has the same size and resolution as grid 4. This grid treats the
escaping particles of a galaxy, and contains all particles with r > Rout.

Grids 1 to 3 are focused on a common centre of the galaxy and move with it
through the ‘local universe’, as detailed below. All grids have the same number
of cells per dimension, n, for all galaxies. The boundary condition, requiring
two empty cells with � = 0 at each boundary, is open and non-periodic, thus
providing an isolated system. This however means that only n− 4 active cells
per dimension are used.

To keep the memory requirement low, all galaxies are treated consecutively
in the same grid-arrays, whereby the particles belonging to different galaxies
can have different masses. Each of the five grids has its associated potential
Φi, i = 1, 2, . . . , 5 computed by the PM technique from the particles of one
galaxy located as described above. The accelerations are obtained additively
from the five potentials of each galaxy in turn in the following way:

Φ(r) = [θ(Rcore − r) · Φ1 + θ(r −Rcore) · Φ2 + Φ3] · θ(Rout − r)
+ θ(r −Rout) · Φ4 + Φ5

Φ(Rcore) = Φ1 + Φ3 + Φ5

Φ(Rout) = Φ2 + Φ3 + Φ5, (6.17)

where θ(ξ) = 1 for ξ > 0 and θ(ξ) = 0 otherwise. This means:

• For a particle in the range r ≤ Rcore, the potentials of grids 1, 3 and 5 are
used to calculate the acceleration.

• For a particle with Rcore < r ≤ Rout, the potentials of grids 2, 3 and 5 are
combined.

• And finally, if r > Rout, the acceleration is calculated from the potentials
of grids 4 and 5.

• Any particle with r > Rsystem is removed from the computation.

Due to the additivity of the potential (and hence its derivatives, the accel-
erations) the velocity changes originating from the potentials of each of the
galaxies can be separately updated and accumulated in the first of the leapfrog
formulae (6.16). The final result does not depend on the order by which the
galaxies are taken into account and it could be computed even in parallel, if
a final accumulation takes place. After all velocity changes have been applied
to all galaxies, the positions of the particles are finally updated.

As long as the galaxies are well separated, they feel only the low-resolution
potentials of the outer grids. But as the galaxies approach each other, their
high-resolution grids overlap, leading to a high-resolution force calculation
during the interaction.

6.3.1 Grid Tracking

Two alternative schemes to position and track the inner and middle grids can
be used. The most useful scheme centres the grids on the density maximum
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of each galaxy at each step. The position of the density maximum is found by
constructing a sphere of neighbours centred on the densest region, in which
the centre of mass is computed. This is performed iteratively. The other option
is to centre the grids during run-time on the position of the centre of mass of
each galaxy using all its particles remaining in the computation.

6.3.2 Edge-Effects

It can be seen in Fig. 6.4 that only spherical regions of the cubic grids contain
particles (except for grid 5). Particles with eccentric orbits can cross the border
of two grids, thus being subject to forces resolved differently. No interpolation
of the forces is done at the grid boundaries. This keeps the code fast and
slim, but the grid sizes have to be chosen properly in advance to minimise the
boundary discontinuities. It leads to some additional but negligible relaxation
effects, because the derived total potential has insignificant discontinuities at
the grid boundaries (Wassmer 1992). The best way to avoid these edge-effects
is to place the grid boundaries at ‘places’ where the slope of the potential is
not steep.

6.3.3 Choice of Parameters

Finally, we make some comments on the right choice of parameters. In princi-
ple, Superbox works with all sets of parameters, but the outcome might be
unphysical. The user has to check if the choice makes sense or not. There are
a few rules that help to ensure that the simulation is not unrealistic. First,
one should check if there are enough particles for the given resolution. As a
rule-by-thumb, one can divide the number of particles by the total number of
cells of one grid. If the mean number of particles per cell amounts to a few,
then one is on the safe side (conservative < N >≈ 10−15). Second, one should
check the time-step. Particles should not travel much more than one grid-cell
per time step, otherwise one again loses resolution. Another rule-by-thumb is:
take the shortest crossing-time of all objects and divide it by 10 (conservative:
50–70). This ensures that this object stays stable. It is also not useful to have
large resolution steps between the grid levels. At least one should avoid them
in all places of interest.
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7.1 What is Dynamical Friction?

Dynamical friction is, as the name says, a deceleration of massive objects. It
occurs whenever a massive object travels through another extended object.
This behaviour makes dynamical friction one of the most important effects in
stellar dynamics.

It occurs on all kinds of length-scales and objects from the sinking to the
centre of massive stars inside a star cluster, leading to mass segregation, via
sinking of star clusters and dwarf galaxies inside the host galaxy to collisions
of massive galaxies.

Dynamical friction is a pure gravitational interaction between the massive
object (M) and the multitude of lighter stars (m) of the extended object it is
travelling through (see Fig. 7.1, left panel). In the rest-frame of the moving ob-
ject M , the lighter stars are oncoming from the front and get deflected behind
the object (see Fig. 7.1, middle panel). These many gravitational interactions
sum up to an effective deceleration of the object, while some of the deflected
lighter particles m build up a wake behind M (see Fig. 7.1, right panel). This
wake can be measured and may induce an extra drag on the moving object,
but the drag is neglected in the determination of the standard description of
dynamical friction. It is dynamical friction which causes the wake and not the
wake being responsible for the dynamical friction!

M
v

M
wake

Fig. 7.1. Dynamical friction as a cartoon
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Hence dynamical friction causes a deceleration of the object M and there-
fore, if it was on a stable orbit before, causes a shrinking of this orbit and
sinking to the centre in response to the deceleration. If the object is initially
on an eccentric orbit, dynamical friction acts in a way that the orbit gets more
and more circular.

7.2 How to Quantify Dynamical Friction?

Dynamical friction was first quantified by Chandrasekhar (1943). In this sec-
tion, the classical way to derive the dynamical friction formula will be followed
(see for example Binney & Tremaine 1987, chapter 7.1).

Before the multitude of encounters can be treated, one has to focus on a
single encounter. The geometry of this encounter is shown in the left panel of
Fig. 7.2. Defining r = xm − xM as the separation vector between m and M
and V = ṙ, one gets the relative velocity change

ΔV = Δvm − ΔvM . (7.1)

Because this two-body system is conservative, one can apply momentum con-
servation, which leads to

mΔvm +MΔvM = 0. (7.2)

Combining these two equations and eliminating Δvm gives ΔvM as a function
of ΔV :

ΔvM = −
(

m

m+M

)

ΔV . (7.3)

In the right panel of Fig. 7.2 we show the hyperbolic geometry of the Kepler
problem in the frame of the reduced particle mass travelling in the combined
potential due to both particles (m + M). The conserved angular momentum

m

M

xM

xm

r

vm

vM
V0

V0

ψ ψ0

θ
b r

Fig. 7.2. Left: Geometry of a single encounter. Right: The motion of the reduced
particle during a hyperbolic encounter. V 0 = V (t = −∞) is the initial velocity, b is
the impact parameter and θ is the deflection angle
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(per unit mass) in this system is L = bV0 = r2Ψ̇. From the analytical solu-
tion of the Kepler problem, we know the equation that relates radius r and
azimuthal angle Ψ:

1
r

= C cos(Ψ − Ψ0) +
G(m+M)

b2V 2
0

, (7.4)

where C and Ψ0 are constants defined by the initial conditions. If (7.4) is
differentiated with respect to time, one gets

dr
dt

= Cr2Ψ̇ sin(Ψ − Ψ0) = CbV0 sin(Ψ − Ψ0). (7.5)

Evaluating (7.4) and (7.5) at t = −∞ one obtains

0 = C cos(Ψ0) +
G(m+M)

b2V 2
0

(7.6)

−V0 = CbV0 sin(−Ψ0). (7.7)

Using these two equations to eliminate C leads to

tan(Ψ0) = − bV 2
0

G(m+M)
. (7.8)

The point of closest approach is reached when Ψ = Ψ0 and, since the orbit
is symmetrical about this point, the deflection angle is θ = 2Ψ0 − π. By
conservation of energy, the length of the relative velocity vector is the same
before and after the encounter and has the value V0. Hence the components
ΔV ‖ and ΔV ⊥ of ΔV are given by

|ΔV ⊥| = V0 sin(θ) = V0 |sin(2Ψ0)| =
2V0 |tan(Ψ0)|
1 + tan2(Ψ0)

=
2bV 3

0

G(m+M)

[

1 +
b2V 4

0

G2(m+M)2

]−1

(7.9)

∣
∣ΔV ‖

∣
∣ = V0 [1 − cos(θ)] = V0(1 + cos(2Ψ0)) =

2V0

1 + tan2(Ψ0)

= 2V0

[

1 +
b2V 4

0

G2(m+M)2

]−1

. (7.10)

ΔV ‖ always points in the direction opposite to V 0. Using (7.3) one finally
gets

|ΔvM⊥| =
2mbV 3

0

G(m+M)2

[

1 +
b2V 4

0

G2(m+M)2

]−1

(7.11)

∣
∣ΔvM‖

∣
∣ =

2mV0

m+M

[

1 +
b2V 4

0

G2(m+M)2

]−1

. (7.12)
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Hence by (7.3), ΔvM‖ always points in the same direction as V 0.
Let us now imagine that M travels through an infinite, homogeneous “sea

of particles”. Then there are as many deflections from “above” as from “be-
low” or from “right” or “left” and the changes in ΔvM⊥ sum up to zero.
Furthermore, one has to invoke the “Jeans swindle” to neglect the gravita-
tional potential of the “sea of particles”, so the motion of each particle is
determined only by M . The changes in ΔvM‖ are all parallel to V 0 and form
a non-zero resultant; i.e. the mass M suffers a steady deceleration, which is
said to be dynamical friction.

To determine the deceleration, one now has to integrate over all possible
impact parameters b and velocities vm. The number density of particles m
with velocity distribution f(v) in the velocity-space element d3vm at impact
parameters between b and b+ db is

2πbdb× V0 × f(vm)d3vm. (7.13)

Hence the net rate of change of vM is

dvM

dt

∣
∣
∣
∣
vm

= V 0f(vm)d3vm

∫ bmax

0

2mV0

m+M

[

1 +
b2V 4

0

G2(m+M)2

]−1

2πbdb,

(7.14)

with bmax the largest impact parameter to be considered. Performing the
integration over all b, one finds

dvM

dt

∣
∣
∣
∣
vm

= 2π ln(1 + Λ2)G2m(m+M)f(vm)
vm − vM

|vm − vM |3
d3vm (7.15)

with

Λ =
bmaxV

2
0

G(m+M)
=

bmax

bmin
. (7.16)

Usually Λ is very large and so one can assume that 1
2 ln(1 + Λ2) ≈ ln(Λ),

which is called the Coulomb logarithm. Furthermore, one replaces V0 by the
typical speed vtyp. Equation (7.15) states that particles that have velocity vm

exert a force on M that acts parallel to vm−vM and is inversely proportional
to the square of this vector. The problem to integrate over all velocities vm is
equivalent to finding the gravitational field at the point with position vector
in velocity space vM , which is generated by the “mass density” ρ(vm) =
4π ln(Λ)Gm(m + M)f(vm). If the particles move isotropically, the density
distribution is spherical and, according to Newton’s first and second theorem,
the total acceleration of M is equal to G/v2

M times the total “mass” at vm <
vM . Hence

dvM

dt
= −16π2 ln(Λ)G2m(m+M)

∫ vM

0
f(vm)v2

mdvm

v3
M

vM , (7.17)

i.e. only particles m with velocities slower than M contribute to the force that
always opposes the motion of M and this equation is henceforth called the
Chandrasekhar dynamical friction formula.
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If f(vm) is Maxwellian with dispersion σ, then

f =
n0

(2πσ2)3/2
exp

(

− v2

2σ2

)

, (7.18)

and introducing ρ = n0m as the background density, one can perform the
integration, which gives:

dvM

dt
= −4π ln(Λ)G2ρM

v3
M

[

erf(X) − 2X√
π

exp(−X2)
]

vM (7.19)

with X = vM/
√

2σ. This formula holds for M � m.
With this formula one can derive some useful relations. If keeping ln Λ

constant, we can determine the time a star cluster or dwarf galaxy needs to
spiral into the centre of its host system:

tfric =
1.17D2

0vcirc

ln(Λ)GM
=

2.64 × 1011

ln(Λ)

(
D0

2 kpc

)2 ( vcirc

250 km s−1

)(106 M�
M

)

yr.

(7.20)

Furthermore, McMillan & Portegies Zwart (2003) derived a formula for the
sinking rate if the background is a mass distribution following a power law of
the form M(D) = A ·Dα. Then the distance D of an object to the centre of
the host system vs. time is given by

D(t) = D0

[

1 − α(α+ 3)
α+ 1

√
G

ADα+3
0

χM ln(Λ)t

]2/3+α

, (7.21)

with

χ = erf(X) − 2X√
π

exp(−X2), (7.22)

where X = vM/
√

2σ.
Even though one might think that the derivation of Chandrasekhar’s for-

mula has too many vague definitions and approximations in it, it has been
shown that it is a really powerful tool to describe dynamical friction in all
kinds of environments.

7.3 Dynamical Friction in Numerical Simulations

Especially in numerical simulations, the validity of Chandrasekhar’s formula
has been verified throughout the decades. Still some words of caution have
to be added. In the previous section, it was shown that Λ = bmax/bmin, with
bmin,theo = G(m + M)/v2

M in the extreme case of a point mass being a very
small quantity (e.g. for a 106 M� black hole with a velocity of 50 km s−1 gives
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bmin ≈ 2 pc). For extended objects like a star cluster bmin is of the order of
the size of the cluster.

However, even if one uses a point mass to determine dynamical friction, it is
not easy to reach the correct result. All standard N -body codes are resolution-
limited. Even if one does not introduce softening and uses a direct summation
N -body code, the limitation gets introduced through the finite particle num-
ber. In a study how dynamical friction is influenced by the resolution of the
simulation code (i.e. the softening length used), Spinnato et al. (2003) showed
that with a given softening length ε (or in the case of a particle-mesh code
the cell-length �),

bmin,eff ≈ bmin,theo + ε (or �). (7.23)

This is shown as the actual sinking curve for two choices of resolution in a
particle-mesh code in the left panel of Fig. 7.3, and for all choices of ε as the
derived ln(Λ) in the comparison to a direct summation N-body codes, a tree
code and a particle-mesh code in the right panel.

In this study, ln(Λ) was assumed to be constant during the whole simula-
tion time independently of the actual distance D to the centre of the back-
ground. Fitting bmax of a constant ln(Λ) to the data resulted in bmax = kD0

with k ≈ 0.5.
In another study, Fellhauer & Lin (2007) used the same approach but fitted

ln(Λ) at many small time-slices during the sinking process and determined
bmin as function of the resolution and bmax as function of the distance D as
shown in Fig. 7.4:

ln Λ = ln(bmax) − ln(bmin)
= ln(k′ ·D(t)) + bmin,eff . (7.24)

The values for bmin,eff were in very good agreement with (7.23) for the different
resolutions. Superbox, the particle-mesh code used in this study, has three
levels of grid-resolutions. While the point-mass starts inside the medium res-
olution, it crosses the grid-boundary to the high-resolution area when D < 1
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Fig. 7.3. Influence of the resolution on the dynamical friction of a point mass
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D

In
Λ

Fig. 7.4. ln(Λ) as a function of the distance to the centre of the background. Also
visible is the change in resolution for D < 1 which leads to a smaller value of bmin

and a larger value of ln(Λ). ln(Λ) is decreasing with decreasing distance. Fitting
curves assume bmax ∝ D (7.24)

in the above simulation. The values for k′ differ from the value k found in the
previous study and also seem to be dependent on the resolution.

7.4 Dynamical Friction of an Extended Object

In the previous section, the dependence of ln(Λ) on environment was investi-
gated, which was possible because the studies involved the sinking of a point
mass with constant mass. In many cases of dynamical friction the sinking ob-
ject is extended, and due to tidal forces acting on it the mass is not constant.
This section investigates which mass one has to insert into the dynamical
friction formulae like (7.19) and (7.21).

The initial mass and orbit of the extended object (it could be a star cluster
or a dwarf galaxy) is the same as the one of the point-mass of the previous
section. We use again (7.21) to fit now the combined quantity Mcl ln(Λ). For
the left panel this quantity is converted into ln(Λ) in the following two ways:

ln Λ(t)crosses = (Mcl ln Λ)(t)/Mbound(t = 0) (7.25)
ln Λ(t)tri−pods = (Mcl ln Λ)(t)/Mbound(t). (7.26)

The curves show that either way does not give the correct answer. If the
mass is kept constant and the initial mass is inserted, the data points fall
below the reference line of the point-mass case. This disparity is expected
since an extended object should have a larger bmin than that of a point-mass
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potential. For t < 30 or D > 1, the difference between these two simulations
is less than 20 per cent. However, it can also be seen that the deviation from
the fitting line grows with time, especially at t > 30 (or equivalently as D
decreases below 1). This growing difference is due to the loss of mass from
the stellar cluster. This divergence shows that a constant Mcl approximation
does not adequately represent the results of the simulation. If one inserts the
bound mass as responsible for the dynamical friction, the measured values are
systematically above the fitting line that represents the cluster with a point-
mass potential. However, using the above argument that an extended object
should have a larger bmin than that of a point-mass potential, the tri-pods
measured from this simulation would be systematically below the fitting line
if the bound stars adequately account for all the mass that contributes to the
dynamical friction. This disparity is a first hint that more particles may take
part in the dynamical friction than just the bound stars. In the later stages
of the evolution, these values of ln Λ increase quite dramatically, which is a
clear sign that Mcl is underestimated.

In the right panel of Fig. 7.5, the bound mass of the object as a function of
time (solid line) is plotted. In the same figure, crosses and squares represent
the mass of the cluster taking part in the dynamical friction process if the same
ln Λ as that derived for a point-mass is assumed. Then one solves for Mcl with
(7.21). For the crosses the actual values from the point-mass simulation is
applied, while the data-points of the squares are derived using the smoothed

In
Λ

tD

M
cl

Fig. 7.5. Dynamical friction on an extended object. Left: Fitting Mcl ln(Λ) to the
sinking curve in small time-slices like in Fig. 7.4 and deriving ln(Λ) according to
(7.25) & (7.26). Right: Using the values of ln(Λ) derived from the point-mass case to
determine Mcl, the mass responsible for dynamical friction (yellow squares using the
fitting formulae; black crosses with error-bars using the actual values of the point-
mass simulation). (Red) solid line shows the bound mass of the object, long dashed
(green) line the bound mass plus the unbound mass in a ring around the centre of
the background with size of the object. (Red) short dashed line is the rule-by-thumb:
bound mass plus half of the unbound mass
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fitting curve for ln Λ(D) from (7.24). (Since it has already been shown that the
magnitude of ln Λ(D) for a cluster with a Plummer potential is smaller than
that for a point mass, the actual total mass that contributes to the dynamical
friction is slightly larger than both the values represented by the crosses and
the squares.) Even though the uncertainties are large, the data points show
that the total mass responsible which contribute to the effect of dynamical
friction is systematically above the bound mass in the bound mass curve.

In addition to the bound mass the lost mass of the cluster which is located
in a ring of the cluster dimension around the galaxy at the same distance
is calculated, and only the particles with the same velocity signature as the
cluster are counted. Adding this mass to the bound mass is shown as the
short dashed line in the right panel of Fig. 7.5. This mass estimate seems to
fit the data much better. This value is not easy to access and surely has to be
replaced by a more elaborate formulation of dynamical friction, i.e. assigning
weights to all unbound particles with respect to their position and velocity
to the cluster. Thus, applying a simple rule-by-thumb by adding half of the
unbound mass to the bound mass (shown as long dashed line in the right
panel of Fig. 7.5) fits the data nicely, taking into account that the “actual”
ln Λ of an extended object should be smaller than the one of a point mass, i.e.
the data points have to be regarded as lower limits. Even though this simple
estimate has no physical explanation and breaks down during the very final
stages of the dissolution of the cluster, it gives an easy accessible estimate of
the dynamical friction of an extended object suffering from mass-loss.
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8.1 Introduction

Most stars form in dense star clusters deeply embedded in residual gas. The
populations of these objects range from small groups of stars with about a
dozen binaries within a volume with a typical radius of r ≈ 0.3 pc through
to objects formed in extreme star bursts containing N ≈ 108 stars within
r ≈ 36 pc. Star clusters, or more generally dense stellar systems, must there-
fore be seen as the fundamental building blocks of galaxies. Differentiation
of the term star cluster from a spheroidal dwarf galaxy becomes blurred near
N ≈ 106. Both are mostly pressure-supported, that is, random stellar motions
dominate any bulk streaming motions such as rotation. The physical processes
that drive the formation, evolution and dissolution of star clusters have a deep
impact on the appearance of galaxies. This impact has many manifestations,
ranging from the properties of stellar populations, such as the binary frac-
tion and the number of type Ia and type II supernovae, through the velocity
structure in galactic discs, such as the age–velocity dispersion relation, to the
existence of stellar halos around galaxies, tidal streams and the survival and
properties of tidal dwarf galaxies, the existence of which challenge current cos-
mological perspectives. Apart from this cosmological relevance, dense stellar
systems provide unique laboratories in which to test stellar evolution theory,
gravitational dynamics, the interplay between stellar evolution and dynamical
processes and the physics of stellar birth and stellar feedback processes during
formation.

Star clusters and other pressure-supported stellar systems in the sky
merely offer snap-shots from which we can glean incomplete information. Be-
cause there is no analytical solution to the equations of motion for more than
two stars, these differential equations need to be integrated numerically. Thus,
in order to gain an understanding of these objects in terms of the above is-
sues, a researcher needs to resort to numerical experiments in order to test
various hypotheses as to the possible physical initial conditions (to test star-
formation theory) or the outcome (to quantify stellar populations in galaxies,
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for example). The initialisation of a pressure-supported stellar system is such
that the initial object is relevant for the real physical Universe, and is therefore
a problem of some fundamental importance.

Here empirical constraints on the initial conditions of star clusters are
discussed and some problems to which star clusters are relevant are raised.
Section 8.2 contains information to set up a realistic computer model of a star
cluster, including models of embedded clusters. The initial mass distribution of
stars is discussed in Sect. 8.3, and Sect. 8.4 delves into the initial distribution
functions of multiple stars. A brief summary is provided in Sect. 8.5.

8.1.1 Embedded Clusters

In this section an outline is given of some astrophysical aspects of dense stellar
systems in order to help differentiate probable evolutionary effects from initial
conditions. A simple example clarifies the meaning of this. An observer may
see two young populations with comparable ages (to within 1Myr say). They
have similar observed masses but different sizes and a somewhat different
stellar content and different binary fractions. Do they signify two different
initial conditions derived from star-formation or can both be traced back to
a t = 0 configuration, which is the same?

Preliminaries

Assume we observe a very young population of N stars with an age τage and
that we have a rough estimate of its half-mass radius, rh, and embedded stellar
mass, Mecl.1 The average mass is

m =
Mecl

N
. (8.1)

Also assume we can estimate the star-formation efficiency (SFE), ε, within a
few rh. For this object,

ε =
Mecl

Mecl +Mgas
, (8.2)

where Mgas is the gas left over from the star-formation process. The tidal
radius of the embedded cluster can be estimated from the Jacobi limit
((Eq. (7-84) in Binney & Tremaine 1987) as determined by the host galaxy
when any contributions by surrounding molecular clouds are ignored,

rtid =
(
Mecl +Mgas

3Mgal

) 1
3

D, (8.3)

1Throughout all masses, m, M , etc. are in units of M�, unless noted otherwise.
“Embedded stellar mass” refers to the man in stars at the time before residual gas
expulsion and when star-formation has ceased.
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where Mgal is the mass of the spherically distributed galaxy within the dis-
tance D of the cluster from the centre of the galaxy. This radius is a rough
estimate of that distance from the cluster at which stellar motions begin to
be significantly influenced by the host galaxy.

The following quantities that allow us to judge the formal dynamical state
of the system, the formal crossing time of the stars through the object, can
be defined as

tcr ≡
2 rh
σ

, (8.4)

where2

σ =
√
GMecl

ε rh
(8.5)

is, up to a factor of order unity, the three-dimensional velocity dispersion of the
stars in the embedded cluster. Note that these equations serve to estimate the
possible amount of mixing of the population. If τage < tcr, the object cannot
be mixed and we are seeing it close to its initial state. It takes a few tcr for a
dynamical system out of dynamical equilibrium to return back to it. This is
not to be mistaken for a relaxation process.

Once the stars orbit within the object, they exchange orbital energy
through weak gravitational encounters and rare strong encounters. The sys-
tem evolves towards a state of energy equipartition. The energy equipartition
time-scale, tms, between massive and average stars (Spitzer 1987, p. 74), which
is an estimate of the time massive stars need to sink to the centre of the system
through dynamical friction on the lighter stars, is

tms =
m

mmax
trelax. (8.6)

Here, mmax is the massive-star mass and the characteristic two-body relax-
ation time (e.g. Eq. (4–9) in Binney & Tremaine 1987) is

trelax = 0.1
N

lnN
tcr. (8.7)

This formula refers to a pure N -body system without embedded gas. A rough
estimate of trelax,emb for an embedded cluster can be found in Eq. (8) of Adams
& Myers (2001). The above (8.7) is a measure for the time a star needs to
change its orbit significantly from its initial trajectory. We often estimate it
by calculating the amount of time that is required to change the velocity, v,
of a star by an amount Δv ≈ v.

Thus, if for example, τage > tcr and τage < trelax, the system is probably
mixed and close to dynamical equilibrium, but it is not yet relaxed. That is,
it has not had sufficient time for the stars to exchange a significant amount
of orbital energy. Such a cluster may have erased its sub-structures.

2As an aside, note that G = 0.0045 pc3/M� Myr2 and that 1 km s−1 =
1.02 pc/Myr.
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Fragmentation and Size

The very early stages of cluster evolution on a scale of a few parsecs are
dominated by gravitational fragmentation of a turbulent magnetised contract-
ing molecular cloud core (Clarke, Bonnell & Hillenbrand 2000; Mac Low &
Klessen 2004; Tilley & Pudritz 2007). Gas-dynamical simulations show the
formation of contracting filaments, which fragment into denser cloud cores,
that form subclusters of accreting protostars. As soon as the protostars ra-
diate or lose mass with sufficient energy and momentum to affect the cloud
core, these computations become expensive because radiative transport and
deposition of momentum and mechanical energy by non-isotropic outflows are
difficult to handle with present computational means (Stamatellos et al. 2007;
Dale, Ercolano & Clarke 2007).

Observations of the very early stages at times less than a few hundreds of
thousands of years suggest that protoclusters have a hierarchical protostellar
distribution: a number of subclusters with radii less than 0.2 pc and separated
in velocity space are often seen embedded within a region less than a pc
across (Testi et al. 2000). Many of these subclusters may merge to form a
more massive embedded cluster (Scally & Clarke 2002; Fellhauer & Kroupa
2005). It is unclear though if subclusters typically merge before residual gas

blow-out or if the residual gas is removed before the sub-clumps can interact
significantly, nor is it clear if there is a systematic mass dependence of any
such possible behaviour.

Mass Segregation

Whether or not star clusters or subclusters form mass-segregated remains an
open issue. Mass segregation at birth is a natural expectation because proto-
stars near the density maximum of the cluster have more material to accrete.
For these, the ambient gas is at a higher pressure allowing protostars to ac-
crete longer before feedback termination stops further substantial gas inflow
and the coagulation of protostars is more likely there (Zinnecker & Yorke
2007; Bonnell, Larson & Zinnecker 2007). Initially mass-segregated subclus-
ters preserve mass segregation upon merging (McMillan, Vesperini & Porte-
gies Zwart 2007). However, for m/mmax = 0.5/100 and N ≤ 5 × 103 stars, it
follows from (8.6) that

tms ≤ tcr. (8.8)

That is, a 100M� star sinks to the cluster centre within roughly a crossing
time (see Table 8.1 below for typical values of tcr).

Currently, we cannot say conclusively if mass segregation is a birth phe-
nomenon (e.g. Gouliermis et al. 2004), or whether the more massive stars
form anywhere throughout the protocluster volume. Star clusters that have
already blown out their gas at ages of one to a few million years are typically
mass-segregated (e.g. R136, Orion Nebula Cluster).
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Table 8.1. Notes: the Y in the O stars column indicates that the maximum stellar
mass in the cluster surpasses 8 M� (Fig. 8.1). The average stellar mass is taken to
be m = 0.4 M� in all clusters. A star-formation efficiency of ε = 0.3 is assumed. The
crossing time, tcr, is (8.4). The pre-supernova gas evacuation time-scale is τgas =
r/vth, where vth = 10 km s−1 is the approximate sound velocity of the ionised gas
and τgas = 0.05 Myr for r = 0.5 pc, while τgas = 0.1 Myr for r = 1 pc

Mecl/M� N O stars? tcr/Myr τgas/tcr tcr/Myr τgas/tcr
(rh = 0.5 pc 0.5 pc 1 pc 1 pc)

40 100 N 0.9 – 2.6 –
100 250 Y/N 0.6 0.08 1.6 0.2
500 1250 Y 0.3 0.2 0.7 0.1
103 2.5 × 103 Y 0.2 0.25 0.5 0.2
104 2.5 × 104 Y 0.06 0.8 0.2 0.5
105 2.5 × 105 Y 0.02 2.5 0.05 2
106 2.5 × 106 Y 0.006 8.3 0.02 5

To affirm, natal mass segregation would impact positively on the notion
that massive stars (more than about 10M�) only form in rich clusters and
negatively on the suggestion that they can also form in isolation. For recent
work on this topic see Li, Klessen & Mac Low (2003) and Parker & Goodwin
(2007).

Feedback Termination

The observationally estimated SFE (8.2) is (Lada & Lada 2003)

0.2 ≤ ε ≤ 0.4, (8.9)

which implies that the physics dominating the star-formation process on scales
less than a few parsecs is stellar feedback. Within this volume, the pre-cluster
cloud core contracts under self-gravity and so forms stars ever more vigorously,
until feedback energy suffices to halt the process (feedback termination).

Dynamical State at Feedback Termination

Each protostar needs about tps ≈ 105 yr to accumulate about 95% of its
mass (Wuchterl & Tscharnuter 2003). The protostars form throughout the
pre-cluster volume as the protocluster cloud core contracts. The overall pre-
cluster cloud-core contraction until feedback termination takes (8.4, 8.5)

tcl,form ≈ few × 2√
G

(
Mecl

ε

)− 1
2

r
3
2
h , (8.10)

(a few times the crossing time), which is about the time over which the cluster
forms. Once a protostar condenses out of the hydro-dynamical flow, it becomes
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a ballistic particle moving in the time-evolving cluster potential. Because many
generations of protostars can form over the cluster-formation time-scale, and
if the crossing time through the cluster is a few times shorter than tcl,form, the
very young cluster is mostly in virial equilibrium when star-formation stops
when any residual gas has been lost.3 It is noteworthy that for rh = 1pc

tps ≥ tcl,form for
Mecl

ε
≥ 104.9 M� (8.11)

(the protostar-formation time formally surpasses the cluster formation time),
which is near the turnover mass in the old-star cluster mass function (eg.
Baumgardt 1998).

A critical parameter is thus the ratio

τ =
tcl,form
tcr

. (8.12)

If it is less than unity, protostars condense from the gas and cannot reach
virial equilibrium in the potential before the residual gas is removed. Such
embedded clusters may be kinematically cold if the pre-cluster cloud core was
contracting, or hot if the pre-cluster cloud core was pressure confined, because
the young stars do not feel the gas pressure.

In those cases where τ > 1, the embedded cluster is approximately in virial
equilibrium because generations of protostars that drop out of the hydrody-
namic flow have time to orbit the potential. The pre-gas-expulsion stellar
velocity dispersion in the embedded cluster (8.5) may reach σ = 40pc Myr−1

if Mecl = 105.5 M�, which is the case for ε rh < 1 pc. This is easily achieved
because the radius of one-Myr old clusters is r0.5 ≈ 0.8 pc with no dependence
on mass. Some observationally explored cases are discussed by Kroupa (2005).
Notably, using K-band number counts, Gutermuth et al. (2005) appear to
find evidence for expansion after gas removal.

Interestingly, recent Spitzer results suggest a scaling of the characteristic
projected radius R with mass,4

Mecl ∝ R2 (8.13)

(Allen et al. 2007), so the question of how compact embedded clusters form
and whether there is a mass–radius relation needs further clarification. Note
though that such a scaling is obtained for a stellar population that expands
freely with a velocity given by the velocity dispersion in the embedded cluster
(8.5),

3A brief transition time ttr � tcl,form exists during which the star-formation rate
decreases in the cluster while the gas is being blown out. However, for the purpose
of the present discussion this time may be neglected.

4Throughout this text, projected radii are denoted by R, while the 3D radius
is r.
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r(t) ≈ ro + σ t ⇒ Mecl =
1
G

(
r(t) − ro

t

)2

, (8.14)

where ro ≤ 1 pc is the birth radius of the cluster. Is the observed scaling then
a result of expansion from a compact birth configuration after gas expulsion?
If so, it would require a more massive system to be dynamically older, which
is at least qualitatively in-line with the dynamical time-scales decreasing with
mass. Note also that the observed scaling (8.13) cannot carry through to
Mecl ≥ 104 M� because the resulting objects would not resemble clusters.

There are two broad camps suggesting on one hand that molecular clouds
and star clusters form on a free-fall time-scale (Elmegreen 2000; Hartmann
2003; Elmegreen 2007), and on the other hand that many free-fall times are
needed (Krumholz & Tan 2007). The former implies τ ≈ 1 while the latter
implies τ > 1.

Thus, currently unclear issues concerning the initialisation ofN -body mod-
els of embedded clusters are the ratio τ and whether a mass–radius relation
exists for embedded clusters before the development of HII regions. To make
progress, I assume for now that the embedded clusters are in virial equilibrium
at feedback termination (τ > 1) and that they form highly concentrated with
r ≤ 1 pc independently of mass.

The Mass of the Most Massive Star

Young clusters show a well-defined correlation between the mass of the most
massive star, mmax, and the stellar mass of the embedded cluster, Mecl. This
appears to saturate at mmax∗ ≈ 150M� (Weidner & Kroupa 2004, 2006).
This is shown in Fig. 8.1. This correlation may indicate feedback termination
of star-formation within the protocluster volume coupled to the most mas-
sive stars forming latest, or turning-on at the final stage of cluster formation
(Elmegreen 1983).

The evidence for a universal upper mass cutoff near

mmax∗ ≈ 150M� (8.15)

(Weidner & Kroupa 2004; Figer 2005; Oey & Clarke 2005; Koen 2006;
Máız Apellániz et al. 2007; Zinnecker & Yorke 2007) seems to be rather well
established in populations with metallicities ranging from the LMC (Z ≈
0.008) to the super-solar Galactic centre (Z ≥ 0.02) so that the stellar mass
function (MF) simply stops at that mass. This mass needs to be understood
theoretically (see discussion by Kroupa & Weidner 2005; Zinnecker & Yorke
2007). It is probably a result of stellar structure stability, but may be near

80M� as predicted by theory if the most massive stars reside in near-equal
component-mass binary systems (Kroupa & Weidner 2005). It may also be
that the calculated stellar masses are significantly overestimated (Martins,
Schaerer & Hillier 2005).
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Fig. 8.1. The maximum stellar mass, mmax, as a function of the stellar mass of
the embedded cluster, Mecl (Weidner, private communication, an updated version
of the data presented by Weidner & Kroupa 2006). The solid triangle is an SPH
model of star-cluster formation by Bonnell, Bate & Vine (2003), while the solid
curve stems from stating that there is exactly one most massive star in the cluster,
1 =

∫ 150

mmax
ξ(m) dm with the condition Mecl =

∫ mmax
0.08

m ξ(m) dm, where ξ(m) is
the stellar IMF. The solution can only be obtained numerically, but an easy-to-use,
well-fitting function has been derived by Pflamm-Altenburg, Weidner & Kroupa
(2007)

The Cluster Core of Massive Stars

Irrespective of whether the massive stars (more than about 10M�) form at the
cluster centre or whether they segregate there owing to energy equipartition
(8.6), they ultimately form a compact sub-population that is dynamically
highly unstable. Massive stars are ejected from such cores very efficiently on
a core-crossing time-scale and, for example, the well-studied Orion Nebula
cluster (ONC) has probably already shot out 70% of its stars more massive
than 5M� (Pflamm-Altenburg & Kroupa 2006). The properties of O and
B runaway stars have been used by Clarke & Pringle (1992) to deduce the
typical birth configuration of massive stars. They find them to form in binaries
with similar-mass components in compact small-N groups devoid of low-mass
stars. Among others, the core of the Orion Nebula Cluster (ONC) is just such
a system.
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The Star-Formation History in a Cluster

The detailed star-formation history in a cluster contains information about
the events that build up the cluster. Intriguing is the recent evidence for some
clusters that while the bulk of the stars have ages that differ by less than
a few 105 yr, a small fraction of older stars are often encountered (Palla &
Stahler 2000 for the ONC, Sacco et al. 2007 for the σ Orionis cluster). This
may be interpreted to mean that clusters form over about 10 Myr with a
final highly accelerated phase, in support of the notion that turbulence of a
magnetised gas determines the early cloud-contraction phase (Krumholz &
Tan 2007).

A different interpretation would be that as a pre-cluster cloud core con-
tracts on a free-fall time-scale, it traps surrounding field stars which then
become formal cluster members. Most clusters form in regions of a galaxy
that has seen previous star-formation. The velocity dispersion of the previ-
ous stellar generation, such as an expanding OB association, is usually rather
low, around a few km s−1 to 10 km s−1. The deepening potential of a newly
contracting pre-cluster cloud core is able to capture some of the preceding
generation of stars so that these older stars become formal cluster members
although they did not form in the cluster. Pflamm-Altenburg & Kroupa
(2007) study this problem for the ONC and show that the age spread re-
ported by Palla et al. (2007) can be accounted for in this way. This suggests
that the star-formation history of the ONC may in fact not have started about
10 Myr ago, supporting the argument by Elmegreen (2000), Elmegreen (2007)
and Hartmann (2003) that clusters form on a time-scale comparable to the
crossing time of the pre-cluster cloud core. Additionally, the sample of clus-
ter stars may be contaminated by enhanced fore- and back-ground densities
of field stars by focussing of stellar orbits during cluster formation (Pflamm-
Altenburg & Kroupa 2007).

For very massive clusters such as ω Cen, Fellhauer, Kroupa & Evans
(2006) show that the potential is sufficiently deep that the pre-cluster cloud
core may capture the field stars of a previously existing dwarf galaxy. Up to
30% or more of the stars in ω Cen may be captured field stars. This would
explain an age spread of a few Gyr in the cluster and is consistent with the
notion that ω Cen formed in a dwarf galaxy that was captured by the Milky
Way. The attractive aspect of this scenario is that ω Cen need not have been
located at the centre of the incoming dwarf galaxy as a nucleus but within
its disc, because it opens a larger range of allowed orbital parameters for the
putative dwarf galaxy moving about the Milky Way. The currently preferred
scenario in which ω Cen was the nucleus of the dwarf galaxy implies that
the galaxy was completely stripped while falling into the Milky Way leaving
only its nucleus on its current retrograde orbit (Zhao 2004). The new scenario
allows the dwarf galaxy to be absorbed into the bulge of the Milky Way with
ω Cen being stripped from it on its way in.
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Another possibility for obtaining an age spread of a few Gyr in a massive
cluster such as ω Cen is gas accretion from a co-moving inter-stellar medium
(Pflamm-Altenburg & Kroupa 2008). This could only have worked for ω Cen
before it became unbound from its mother galaxy, though. That is, the cluster
must have spent about 2–3Gyr in its mother galaxy before it was captured
by the Milky Way.

This demonstrates beautifully how an improved understanding of dynam-
ical processes on scales of a fewpc impinges on problems related to the forma-
tion of galaxies and cosmology (through the sub-structure problem). Finally,
the increasingly well-documented evidence for stellar populations in massive
clusters with different metallicities and ages, and in some cases even significant
He enrichment, may also suggest secondary star-formation occurring from ma-
terial that has been pre-enriched from a previous generation of stars in the
cluster. Different IMFs need to be invoked for the populations of different ages
(see Piotto 2008 for a review).

Expulsion of Residual Gas

When the most massive stars are O stars, they destroy the protocluster neb-
ula and quench further star-formation by first ionising most of it (feedback
termination). The ionised gas, at a temperature near 104 K and in serious
over-pressure, pushes out and escapes the confines of the cluster volume at
the sound speed (near 10 km s−1) or faster if the winds blow off O stars with
velocities of thousands of km s−1 and impart sufficient momentum.

There are two analytically tractable regimes of behaviour, instantaneous
gas removal and slow gas expulsion over many crossing times.

• First consider instantaneous gas expulsion, τgas = 0. The binding energy
of the object of mass M and radius r is

Ecl,bind = −GM2

r
+

1
2
M σ2 < 0. (8.16)

Before gas expulsion, M = Minit = Mgas +Mecl → M and

σ2
init =

GMinit

rinit
−→ σ. (8.17)

After instantaneous gas expulsion, Mafter = Mecl → M , but σafter =
σinit → σ, and the new binding energy is

Ecl,bind,after = −GM2
after

rinit
+

1
2
Mafter σ

2
init. (8.18)

But the cluster relaxes into a new equilibrium, so that, by the scalar virial
theorem5

5The scalar virial theorem states that 2 K + W = 0 ⇒ E = K + W = (1/2) W ,
where K, W are the kinetic and potential energy and E is the total energy of the
system.
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Ecl,bind,after = −1
2
GMafter

rafter
, (8.19)

and on equating these two expressions for the final energy and using (8.17)
we find that

rafter
rinit

=
Mecl

Mecl −Mgas
. (8.20)

Thus, as Mgas → Mecl, then ε → 0.5 from above, rafter → ∞. This
means that as the SFE approaches 50% from above, the cluster unbinds
itself. But by (8.9), this result would imply either (see Kroupa, Aarseth &
Hurley 2001, and references therein)
– all clusters with OB stars (and thus τgas � tcr) do not survive gas

expulsion, or
– the clusters expel their gas slowly, τgas � tcr. This may be the case if

surviving clusters such as the Pleiades or Hyades formed without OB
stars.

• Now consider slow gas removal, τgas � tcr, τgas → ∞. By (8.20) and the
assumption that an infinitesimal mass of gas is removed instantaneously,

rinit − δr

rinit
=

Minit − δMgas

Minit − δMgas − δMgas
. (8.21)

For infinitesimal steps and, for convenience, dM < 0 but dr > 0,

r − dr
r

=
M + dM
M + 2dM

. (8.22)

Re-arranging this, we find

dr
r

=
dM
M

(

1 − 2
dM
M

. . .

)

, (8.23)

so that

dr
r

=
dM
M

⇒ ln
rafter
rinit

= ln
Minit

Mafter
, (8.24)

upon integration of the differential equation. Thus,

rafter
rinit

=
Mecl +Mgas

Mecl
=

1
ε
, (8.25)

and for example, for a SFE of 20%, the cluster expands by a factor of 5,
rafter = 5 rinit, without dissolving.

Table 8.1 gives an overview of the type of behaviour one might expect for
clusters with increasing number of stars, N , and stellar mass, Mecl, for two
characteristic radii of the embedded stellar distribution, rh. It can be seen that
the gas-evacuation time-scale becomes longer than the crossing time through
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the cluster for Mecl ≥ 105 M�. Such clusters would thus undergo adiabatic
expansion as a result of gas blow out. Less-massive clusters are more likely
to undergo an evolution that is highly dynamic and that can be described as
an explosion (the cluster pops). For clusters without O and massive B stars,
nebula disruption probably occurs on the cluster-formation time-scale of about
a million years and the evolution is again adiabatic. A simple calculation of
the amount of energy deposited by an O star into its surrounding cluster-
nebula suggests it is larger than the nebula binding energy (Kroupa 2005).
This, however, only gives, at best, a rough estimate of the rapidity with which
gas can be expelled. An inhomogeneous distribution of gas leads to the gas
removal preferentially along channels and asymmetrically, so that the overall
gas-excavation process is highly non-uniform and variable (Dale et al. 2005).

The reaction of clusters to gas expulsion is best studied numerically with
N -body codes. Pioneering experiments were performed by Tutukov (1978) and
then Lada, Margulis & Dearborn (1984). Goodwin (1997a,b, 1998) studied gas
expulsion by supernovae from young globular clusters. Figure 8.2 shows the
evolution of an ONC-type initial cluster with a stellar mass Mecl ≈ 4000M�
and a canonical IMF (8.124) and stellar evolution, a 100% initial binary popu-
lation (Sect. 8.4.2) in a solar-neighbourhood tidal field, ε = 1/3 and spherical
gas blow-out on a thermal time-scale (vth = 10 km s−1). The figure demon-
strates that the evolution is far more complex than the simple analytical esti-
mates above suggest, and in fact a substantial Pleiades-type cluster emerges
after losing about two-thirds of its initial stellar population (see also p. 195).
Subsequent theoretical work based on an iterative scheme according to which
the mass of unbound stars at each radius is removed successively shows that

Fig. 8.2. The evolution of 5, 10, 20, . . . , 50% of the Lagrangian radius and the core
radius (Rc = rc, thick lower curve) of the ONC-type cluster discussed in the text.
The gas mass is shown as the dashed line. The cluster spends 0.6 Myr in an embedded
phase before the gas is blown out on a thermal time-scale. The tidal radius (8.3) is
shown by the upper thick solid curve (Kroupa, Aarseth & Hurley 2001)
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the survival of a cluster depends not only on ε, τgas/tcr and rtid but also on the
detailed shape of the stellar distribution function (Boily & Kroupa 2003). For
instantaneous gas removal, ε ≈ 0.3 is a lower limit for the SFE below which
clusters cannot survive rapid gas blow-out. This is significantly smaller than
the critical value of ε = 0.5 below which the stellar system becomes formally
unbound (8.20). However, if clusters form as complexes of subclusters, each
of which pop in this way, then overall cluster survival is enhanced to even
smaller values of ε ≈ 0.2 (Fellhauer & Kroupa 2005).

Whether clusters pop and what fraction of stars remain in a post-gas expul-
sion cluster depend critically on the ratio between the gas-removal time-scale
and the cluster crossing time. This ratio thus mostly defines which clusters suc-
cumb to infant mortality and which clusters merely suffer cluster infant weight
loss. The well-studied observational cases do indicate that the removal of most
of the residual gas does occur within a cluster-dynamical time, τgas/tcr ≤ 1.
Examples noted (Kroupa 2005) are the ONC and R136 in the LMC both of
which have significant super-virial velocity dispersions. Other examples are
the Treasure-Chest cluster and the very young star-bursting clusters in the
massively interacting Antennae galaxy that appear to have HII regions ex-
panding at velocities so that the cluster volume may be evacuated within a
cluster dynamical time. However, improved empirical constraints are needed to
develop further an understanding of cluster survival. Such observations would
best be the velocities of stars in very young star clusters, as they should show
a radially expanding stellar population.

Indeed, Bastian & Goodwin (2006) note that many young clusters have
the radial-density profile signature expected if they are expanding rapidly.
This supports the notion of fast gas blow out. For example, the 0.5–2Myr
old ONC, which is known to be super-virial with a virial mass about twice
the observed mass (Hillenbrand & Hartmann 1998), has already expelled its
residual gas and is expanding rapidly. It has therefore probably lost its outer
stars (Kroupa, Aarseth & Hurley 2001). The super-virial state of young clus-
ters makes measurements of their mass-to-light ratio a bad estimate of the
stellar mass within them (Goodwin & Bastian 2006) and rapid dynamical
mass-segregation likewise makes naive measurements of the M/L ratio wrong
(Boily et al. 2005; Fleck et al. 2006). Goodwin & Bastian (2006) and de Grijs
& Parmentier (2007) find the dynamical mass-to-light ratios of young clusters
to be too large, strongly implying they are in the process of expanding after
gas expulsion.

Weidner et al. (2007) attempted to measure infant weight loss with a
sample of young but exposed Galactic clusters. They applied the maximal-
star-mass to cluster mass relation from above to estimate the birth mass of
the clusters. The uncertainties are large, but the data firmly suggest that the
typical cluster loses at least about 50% of its stars.
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Binary Stars

Most stars form as binaries with, as far as can be stated today, universal orbital
distribution functions (Sect. 8.4). Once a binary system is born in a dense
environment, it is perturbed. This changes its eccentricity and semi-major
axis. Or it undergoes a relatively strong encounter that disrupts the binary or
hardens it perhaps with exchanged companions. The initial binary population
therefore evolves on a cluster crossing time-scale and most soft binaries are
disrupted. It has been shown that the properties of the Galactic field binary
population can be explained in terms of the binary properties observed for very
young populations if these go through a dense cluster environment (dynamical
population synthesis, Kroupa 1995d). A dense cluster environment hardens
existing binaries (p. 240). This increases the SN Ia rate in a galaxy with
many dense clusters (Shara & Hurley 2002).

Binaries are significant energy sources (see also Sect. 8.4). A hard binary
that interacts via a resonance with a cluster field star occasionally ejects one
star with a terminal velocity vej � σ. The ejected star either leaves the clus-
ter causing cluster expansion so that σ drops, or it shares some of its kinetic
energy with the other cluster field stars through gravitational encounters caus-
ing cluster expansion. Binaries in a cluster core can thus halt and reverse core
collapse (Meylan & Heggie 1997; Heggie & Hut 2003).

Mass Loss from Evolving Stars

An old globular cluster with a turn-off mass near 0.8M� has lost 30% of the
mass that remained in it after gas expulsion by stellar evolution (Baumgardt
& Makino 2003). Because the mass loss is most rapid during the earliest times
after the cluster returned to virial equilibrium once the gas was expelled, the
cluster expands further during this time. This is nicely seen in the Lagrangian
radii of realistic cluster-formation models (Kroupa, Aarseth & Hurley 2001).

8.1.2 Some Implications for the Astrophysics of Galaxies

In general, the above have a multitude of implications for galactic and stellar
astrophysics.

1. The heaviest-star–star-cluster-mass correlation constrains feedback models
of star cluster formation (Elmegreen 1983). It also implies that the sum
of all IMFs in all young clusters in a galaxy, the integrated galaxy initial
mass function (IGIMF), is steeper than the invariant stellar IMF observed
in star clusters. This has important effects on the mass–metallicity rela-
tion of galaxies (Koeppen, Weidner & Kroupa 2007). Additionally, star-
formation rates (SFRs) of dwarf galaxies can be underestimated by up to
three orders of magnitude because Hα-dark star-formation becomes possible
(Pflamm-Altenburg, Weidner & Kroupa 2007). This indeed constitutes an
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important example of how sub-pc processes influence the physics on cos-
mological scales.

2. The deduction that type-II clusters probably pop (p. 190) implies that
young clusters will appear to an observer to be super-virial, i.e. to have
a dynamical mass larger than their luminous mass (Bastian & Goodwin
2006; de Grijs & Parmentier 2007).

3. It further implies that galactic fields can be heated and may also lead to
galactic thick discs and stellar halos around dwarf galaxies (Kroupa 2002b).

4. The variation of the gas expulsion time-scale among clusters of different
type implies that the star-cluster mass function (CMF) is re-shaped rapidly,
on a time-scale of a few tens of Myr (Kroupa & Boily 2002).

5. Associated with this re-shaping of the CMF is the natural production of
population II stellar halos during cosmologically early star-formation bursts
(Kroupa & Boily 2002; Parmentier & Gilmore 2007; Baumgardt, Kroupa
& Parmentier 2008).

6. The properties of the binary-star population observed in Galactic fields are
shaped by dynamical encounters in star clusters before the stars leave their
cluster (Sect. 8.4).

Points 2–5 are considered in more detail in the rest of Sect. 8.1.

Stellar Associations, Open Clusters and Moving Groups

As one of the important implications of point 2, a cluster in the age range
1–50Myr has an unphysical M/L ratio because it is out of dynamical equilib-
rium rather than because it has an abnormal stellar IMF (Bastian & Goodwin
2006; de Grijs & Parmentier 2007).

Another implication is that a Pleiades-like open cluster would have been
born in a very dense ONC-type configuration and that, as it evolves, a moving-
group-I is established during the first few dozen Myr. This comprises roughly
two-thirds of the initial stellar population and the cluster is expanding with
a velocity dispersion that is a function of the pre-gas-expulsion configura-
tion (Kroupa, Aarseth & Hurley 2001). These computations were among
the first to demonstrate, with high-precision N -body modelling, that the re-
distribution of energy within the cluster during the embedded phase and dur-
ing the expansion phase leads to the formation of a substantial remnant cluster
despite the inclusion of all physical effects that are disadvantageous for this
to happen (explosive gas expulsion, low SFE ε = 0.33, galactic tidal field and
mass loss from stellar evolution and an initial binary-star fraction of 100%,
see Fig. 8.2). Thus, expanding OB associations may be related to star-cluster
birth and many OB associations ought to have remnant star clusters as nuclei
(see also Clark et al. 2005).

As the cluster expands becoming part of an OB association, the radiation
from its massive stars produce expanding HII regions that may trigger further
star-formation in the vicinity (e.g. Gouliermis, Quanz & Henning 2007).
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A moving-group-II establishes later – the classical moving group made up
of stars that slowly diffuse or evaporate out of the readjusted cluster remnant
with relative kinetic energy close to zero. The velocity dispersion of moving-
group-I is thus comparable to the pre-gas-expulsion velocity dispersion of the
cluster, while moving-group-II has a velocity dispersion close to zero.

The Velocity Dispersion of Galactic-Field Populations
and Galactic Thick Discs

Thus, the moving-group-I would be populated by stars that carry the initial
kinematic state of the birth configuration into the field of a galaxy. Each gen-
eration of star clusters would, according to this picture, produce overlapping
moving-groups-I (and II) and the overall velocity dispersion of the new field
population can be estimated by adding the squared velocities for all expanding
populations. This involves an integral over the embedded-cluster mass func-
tion, ξecl(Mecl), which describes the distribution of the stellar mass content of
clusters when they are born. Because the embedded cluster mass function is
known to be a power-law, this integral can be calculated for a first estimate
(Kroupa 2002b, 2005). The result is that, for reasonable upper cluster mass
limits in the integral, Mecl ≤ 105 M�, the observed age–velocity dispersion
relation of Galactic field stars can be reproduced.

This idea can thus explain the much debated energy deficit: namely that
the observed kinematic heating of field stars with age could not, until now,
be explained by the diffusion of orbits in the Galactic disc as a result of scat-
tering by molecular clouds, spiral arms and the bar (Jenkins 1992). Because
the velocity-dispersion for Galactic-field stars increases with stellar age, this
notion can also be used to map the star-formation history of the Milky Way
disc by resorting to the observed correlation between the star-formation rate
in a galaxy and the maximum star-cluster mass born in the population of
young clusters (Weidner, Kroupa & Larsen 2004).

An interesting possibility emerges concerning the origin of thick discs. If
the star-formation rate was sufficiently high about 11 Gyr ago, star clusters
in the disc with masses up to 105.5 M� would have been born. If they popped
a thick disc with a velocity dispersion near 40 km s−1 would result naturally
(Kroupa 2002b). This notion for the origin of thick discs appears to be qual-
itatively supported by the observations of Elmegreen, Elmegreen & Sheets
(2004) who find galactic discs at a red shift between 0.5 and 2 to show massive
star-forming clumps.

Structuring the Initial Cluster Mass Function

Another potentially important implication from this picture of the evolution of
young clusters is that if the ratio of the gas expulsion time to the crossing time
or the SFE varies with initial (embedded) cluster mass, an initially featureless
power-law mass function of embedded clusters rapidly evolves to one with
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peaks, dips and turnovers at cluster masses that characterise changes in the
broad physics involved.

As an example, Adams (2000) and Kroupa & Boily (2002) assumed that
the function

Micl = fst(Mecl)Mecl (8.26)

exists, where Mecl is as above and Micl is the classical initial cluster mass
and fst = fst(Mecl). According to Kroupa & Boily (2002), the classical initial
cluster mass is that mass which is inferred by standard N -body computations
without gas expulsion (in effect this assumes ε = 1, which is however, unphys-
ical). Thus, for example, for the Pleiades, Mcl ≈ 1000M� at the present time
(age about 100 Myr). A classical initial model would place the initial cluster
mass near Micl ≈ 1500M� by standard N -body calculations to quantify the
secular evaporation of stars from an initially bound and relaxed cluster (Porte-
gies Zwart et al. 2001). If, however, the SFE was 33% and the gas-expulsion
time-scale were comparable to or shorter than the cluster dynamical time,
the Pleiades would have been born in a compact configuration resembling
the ONC and with a mass of embedded stars of Mecl ≈ 4000M� (Kroupa,
Aarseth & Hurley 2001). Thus, fst(4000M�) = 0.38 (= 1500/4000).

By postulating that there exist three basic types of embedded clusters
(Kroupa & Boily 2002), namely

Type I: clusters without O stars (Mecl ≤ 102.5 M�, e.g. Taurus-Auriga pre-
main sequence stellar groups, ρ Oph),

Type II: clusters with a few O stars (102.5 ≤ Mecl/M� ≤ 105.5, e.g. the
ONC),

Type III: clusters with many O stars and with a velocity dispersion compara-
ble to or higher than the sound velocity of ionized gas (Mecl ≥ 105.5 M�),

it can be argued that fst ≈ 0.5 for type I, fst < 0.5 for type II and fst ≈ 0.5
for type III. The reason for the high fst values for types I and III is that
gas expulsion from these clusters may last longer than the cluster dynamical
time because there is no sufficient ionizing radiation for type I clusters, or
the potential well is too deep for the ionized gas to leave (type III clusters).
The evolution is therefore adiabatic ((8.25) above). Type II clusters undergo
a disruptive evolution and witness a high infant mortality rate (Lada & Lada
2003). They are the pre-cursors of OB associations and Galactic clusters. This
broad categorisation has easy-to-understand implications for the star-cluster
mass function.

Under these conditions and an assumed functional form for fst = fst(Mecl),
the power-law embedded cluster mass function transforms into a cluster mass
function with a turnover near 105 M� and a sharp peak near 103 M� (Kroupa
& Boily 2002). This form is strongly reminiscent of the initial globular cluster
mass function, which is inferred by, for example, Vesperini (1998, 2001),
Parmentier & Gilmore (2005) and Baumgardt (1998) to be required for a
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match with the evolved cluster mass function that is seen to have a universal
turnover near 105 M�. By the reasoning given above, this “initial” CMF is,
however, unphysical, being a power-law instead.

This analytical formulation of the problem has been verified nicely with
N -body simulations combined with a realistic treatment of residual gas expul-
sion by Baumgardt, Kroupa & Parmentier (2008), who show the Milky Way
globular cluster mass function to emerge from a power-law embedded-cluster
mass function. Parmentier et al. (2008) expand on this by studying the ef-
fect that different assumptions on the physics of gas removal have on shaping
the star-cluster mass function within about 50 Myr. The general ansatz that
residual gas expulsion plays a dominant role in early cluster evolution may
thus solve the long-standing problem that the deduced initial cluster mass
function needs to have this turnover, while the observed mass functions of
young clusters are featureless power-law distributions.

The Origin of Population II Stellar Halos

The above view implies naturally that a major field-star component is gen-
erated whenever a population of star clusters forms. About 12Gyr ago, the
Milky Way began its assembly by an initial burst of star-formation throughout
a volume spanning about 10 kpc in radius. In this volume, the star-formation
rate must have reached 10M� yr−1 so that star clusters with masses up to
≈ 106 M� formed (Weidner, Kroupa & Larsen 2004), probably in a chaotic,
turbulent early interstellar medium. The vast majority of embedded clus-
ters suffered infant weight loss or mortality. The surviving long-lived clus-
ters evolved to globular clusters. The so-generated field population is the
spheroidal population-II halo, which has the same chemical properties as the
surviving (globular) star clusters, apart from enrichment effects evident in
the most massive clusters. All of these characteristics emerge naturally in
the above model, as pointed out by Kroupa & Boily (2002), Parmentier &
Gilmore (2007) and most recently by Baumgardt, Kroupa & Parmentier
(2008).

8.1.3 Long-Term, or Classical, Cluster Evolution

The long-term evolution of star clusters that survive infant weight loss and
the mass loss from evolving stars is characterised by three physical processes,
the drive of the self-gravitating system towards energy equipartition, stellar
evolution processes and the heating or forcing of the system through external
tides. One emphasis of star-cluster work in this context is to test the theory
of stellar evolution and to investigate the interrelation of stellar astrophysics
with stellar dynamics. The stellar-evolution and the dynamical-evolution time-
scales are comparable. The reader is directed to Meylan & Heggie (1997) and
Heggie & Hut (2003) for further details.
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Tidal Tails

Tidal tails contain the stars evaporating from long-lived star clusters (the
moving-group-II above). The typical S-shaped structure of tidal tails close to
the cluster are easily understood: stars that leave the cluster with a slightly
higher galactic velocity than the cluster are on slightly outward-directed galac-
tic orbits and therefore fall behind the cluster as the angular velocity about
the galactic centre decreases with distance. The outward-directed trailing arm
develops. Stars that leave the cluster with slower galactic velocities than the
cluster fall towards the galaxy and overtake the cluster.

Given that energy equipartition leads to a filtering in energy space of the
stars that escape at a particular time, one expects a gradient in the stellar
mass function progressing along a tidal tail towards the cluster so that the
mass function becomes flatter, richer in more massive stars. This effect is
difficult to detect but, for example, the long tidal tails found emanating from
Pal 5 (Odenkirchen et al. 2003) may show evidence for it.

As emphasised by Odenkirchen et al. (2003), tidal tails have another very
interesting use: they probe the gravitational potential of the Milky Way if
the differential motions along the tidal tail can be measured. They are thus
important future tests of gravitational physics.

Death and Hierarchical Multiple Stellar Systems

Nothing lasts forever and star clusters that survive initial relaxation to virial
equilibrium after residual gas expulsion and mass loss from stellar evolution
ultimately cease to exist after all member stars evaporate to leave a binary or
a long-lived hierarchical multiple system composed of near-equal mass com-
ponents (de la Fuente Marcos 1997, 1998). Note that these need not be single
stars. These cluster remnants are interesting, because they may account for
most of the hierarchical multiple stellar systems in the Galactic field (Good-
win & Kroupa 2005), with the implication that these are not a product of
star-formation but rather of star-cluster dynamics.

8.1.4 What is a Galaxy?

Star clusters, dwarf-spheroidal (dSph) and dwarf-elliptical (dE) galaxies as
well as galactic bulges and giant elliptical (E) galaxies are all stellar-dynamical
systems that are supported by random stellar motions, i.e. they are pressure-
supported. But why is one class of these pressure-supported systems referred
to as star clusters, while the others are galaxies? Is there some fundamental
physical difference between these two classes of systems?

Considering the radius as a function of mass, we notice that systems with
M ≤ 106 M� do not show a mass–radius relation (MRR) and have r ≈ 4 pc.
More massive objects, however, show a well-defined MRR. In fact, Dabring-
hausen, Hilker & Kroupa (2008) find that massive compact objects (MCOs),
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which have 106 ≤ M/M� ≤ 108, lie on the MRR of giant E galaxies (about
1013 M�) down to normal E galaxies (1011 M�), as is evident in Fig. 8.3:

R/pc = 10−3.15

(
M

M�

)0.60±0.02

. (8.27)

Noteworthy is that systems with M ≥ 106 M� also exhibit complex stel-
lar populations, while less massive systems have single-age, single-metallicity
populations. Remarkably, Pflamm-Altenburg & Kroupa (2008) show that a
stellar system with M ≥ 106 M� and a radius as observed for globular clus-
ters can accrete gas from a co-moving warm inter-stellar medium and may
re-start star-formation. The median two-body relaxation time is longer than
a Hubble time for M ≥ 3 × 106 M� and only for these systems is there evi-
dence for a slight increase in the dynamical mass-to-light ratio. Intriguingly,
(M/L)V ≈ 2 for M < 106 M�, while (M/L)V ≈ 5 for M > 106 M� with a
possible decrease for M > 108 M� (Fig. 8.4). Finally, the average stellar den-
sity maximises at M = 106 M� with about 3 × 103 M�/pc3 (Dabringhausen,
Hilker & Kroupa 2008).

Thus,

Fig. 8.3. Mass–radius data plotted against the dynamical mass of pressure-
supported stellar systems (Dabringhausen, Hilker & Kroupa 2008). MCOs are
massive compact objects (also referred to as ultra compact dwarf galaxies). The
solid and dashed lines refer to (8.27), while the dash-dotted line is a fit to dSph and
dE galaxies
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Fig. 8.4. Dynamical M/L values in dependence of the V-band luminosity of
pressure-supported stellar systems (Dabringhausen, Hilker & Kroupa 2008). MCOs
are massive compact objects (also referred to as ultra compact dwarf galaxies)

• the mass 106 M� appears to be special,
• stellar populations become complex above this mass,
• evidence for some dark matter only appears in systems that have a median

two-body relaxation time longer than a Hubble time,
• dSph galaxies are the only stellar-dynamical systems with 10 < (M/L)V <

1000 and as such are total outliers and
• 106 M� is a lower accretion limit for massive star clusters immersed in a

warm inter-stellar medium.

M ≈ 106 M� therefore appears to be a critical mass scale so that less-
massive objects show characteristics of star clusters that are described well
by Newtonian dynamics, while more massive objects show behaviour more
typical of galaxies. Defining a galaxy as a stellar-dynamical object which has
a median two-body relaxation time longer than a Hubble time, i.e. essentially
a system with a smooth potential, may be an objective and useful way to
define a galaxy (Kroupa 1998). Why only smooth systems show evidence
for dark matter remains at best a striking coincidence, at worst it may be
symptomatic of a problem in understanding dynamics in such systems.
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8.2 Initial 6D Conditions

The previous section gave an outline of some of the issues at stake in the
realm of pressure-supported stellar systems. In order to attack these and other
problems, we need to know how to set up such systems in the computer.
Indeed, as much as analytical solutions may be preferred, the mathematical
and physical complexities of dense stellar systems leave no alternatives other
than to resort to full-scale numerical integration of the 6N coupled first-
order differential equations that describe the motion of the system through
6N -dimensional phase space. There are three related questions to ponder.
Given a well-developed cluster, how is one to set it up in order to evolve it
forward in time? How does a cluster form and how does the formation process
affect its later properties? How do we describe a realistic stellar population
(IMF, binaries)? Each of these questions is dealt with in the following sections.

8.2.1 6D Structure of Classical Clusters

Because the state of a star cluster is never known exactly, it is necessary to
perform numerical experiments with conditions that are, statistically, consis-
tent with the cluster snap-shot. To ensure meaningful statistical results for
systems with few stars, say N < 5000, many numerical renditions of the same
object are thus necessary. For example, systems with N = 100 stars evolve
erratically and numerical experiments are required to map out the range of
possible states at a particular time: the range of half-mass radii at an age of
20 Myr in 1000 numerical experiments of a cluster, initially with N = 100 stars
and with an initial half-mass radius r0.5 = 0.5 pc, can be compared with an
actually observed object for testing consistency with the initial conditions.
Excellent recent examples of this approach can be found in Hurley et al.
(2005) and Portegies Zwart, McMillan & Makino (2007), with a recent review
available by Hut et al. (2007) and two text books have been written dealing
with computational and more general aspects of the physics of dense stellar
systems (Aarseth 2003; Heggie & Hut 2003).

The six-dimensional structure of a pressure-supported stellar system at
time t is conveniently described by the phase-space distribution function,
f(r,v; t), where r and v are the phase-space variables and

dN = f(r,v; t) d3x d3v (8.28)

is the number of stars in 6D phase-space volume element d3x d3v. In the case of
a steady state, the Jeans theorem (Binney & Tremaine 1987, their Sect. 4.4)
allows us to express f in terms of the integrals of motion, i.e. the energy
and angular momentum. The phase-space distribution function can then be
written as

f = f(r,v) = f(εe, l), (8.29)
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where
εe =

1
2
v2 + Φ(r) (8.30)

is the specific energy of a star and

l = |r × v| (8.31)

is the specific orbital angular momentum of a star. The Poisson equation is

∇2Φ(r) = 4πGρm(r) = 4π G
∫

allspace

mf d3v, (8.32)

or in spherical symmetry,

1
r2

d
dr

(

r2
dΦ
dr

)

= 4πG
∫

allspace

fm

(
1
2
v2 + Φ, |r × v|

)

d3v, (8.33)

where fm is the phase-space mass-density of all matter and is equal to mf
for a system with equal-mass stars. Most pressure-supported systems have a
near-spherical shape and so in most numerical work it is convenient to assume
spherical symmetry.

For convenience it is useful to introduce the relative potential,6

Ψ ≡ −Φ + Φ0 (8.34)

and the relative energy

E ≡ −εe + Φ0 = Ψ − 1
2
v2, (8.35)

where Φ0 is a constant so that f > 0 for E > 0 and f = 0 for E ≤ 0.
The Poisson equation becomes ∇2Ψ = −4π Gρm subject to the boundary
condition Ψ → Φ0 as r → ∞.

One important property of stellar systems is the anisotropy of their velocity
distribution function. We define the anisotropy parameter

β(r) ≡ 1 − v2
θ

v2
r

, (8.36)

where v2
θ , v

2
r are the mean squared tangential and radial velocities at a par-

ticular location r, respectively. It follows that systems with β = 0 everywhere
have an isotropic velocity distribution function.

If f only depends on the energy the mean squared radial and tangential
velocities are, respectively,

v2
r =

1
ρ

∫

all vel.

v2
r f

[

Ψ − 1
2
(
v2

r + v2
θ + v2

φ

)
]

dvr dvθ dvφ (8.37)

6The following discussion is based on Binney & Tremaine (1987).
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and

v2
θ =

1
ρ

∫

all vel.

v2
θ f

[

Ψ − 1
2
(
v2

r + v2
θ + v2

φ

)
]

dvr dvθ dvφ. (8.38)

If the labels θ and r are exchanged in (8.38), it can be seen that one arrives at
(8.37). Equations (8.37) and (8.38) are thus identical, apart from the labelling.
Thus if f = f(E), β = 0 and the velocity distribution function is isotropic.

If f depends on the energy and the orbital angular momentum of the stars
(|l| = |r × v|), then the mean squared radial and tangential velocities are,
respectively,

v2
r =

1
ρ

∫

all vel.

v2
r f

[

Ψ − 1
2
(
v2

r + v2
θ + v2

φ

)
, r
√
v2

θ + v2
φ

]

dvr dvθ dvφ (8.39)

and

v2
θ =

1
ρ

∫

all vel.

v2
θ f

[

Ψ − 1
2
(
v2

r + v2
θ + v2

φ

)
, r
√
v2

θ + v2
φ

]

dvr dvθ dvφ. (8.40)

If the labels θ and r are exchanged in (8.40), it can be seen that this time one
does not arrive at (8.39). Thus if f = f(E , l), then β 	= 0 and the velocity dis-
tribution function is not isotropic. This serves to demonstrate an elementary
but useful property of the phase-space distribution function.

A very useful series of distribution functions can be arrived at from the
simple form

fm(E) =
{
F En− 3

2 : E > 0,
0 : E ≤ 0.

(8.41)

The mass density,

ρm(r) = 4π F
∫ √

2 Ψ

0

(

Ψ − 1
2
v2

)n− 3
2

v2 dv, (8.42)

where the upper integration bound is given by the escape condition, E =
Ψ − (1/2)v2 = 0. Substituting v2 = 2Ψ cos2θ for some θ leads to

ρm(r) =
{
cn Ψn : Ψ > 0,

0 : Ψ ≤ 0. (8.43)

For cn to be finite, n > 1/2, i.e. homogeneous (n = 0) systems are excluded.
The Lane–Emden equation follows from the spherically symmetric Poisson

equation after introducing dimensionless variables s = r/b, ψ = Ψ/Ψ0, where
b = (4π GΨn−1

0 cn)−1/2 and Ψ0 = Ψ(0),

1
s2

d
ds

(

s2
dψ
ds

)

=
{
−ψn : ψ > 0,

0 : ψ ≤ 0. (8.44)

H. Lane and R. Emden worked with this equation in the context of self-
gravitating polytropic gas spheres, which have an equation of state
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p = K ργ
m, (8.45)

where K is a constant and p the pressure. It can be shown that γ = 1 + 1/n.
That is, the density distribution of a stellar polytrope of index n is the same
as that of a polytropic gas sphere with index γ.

The natural boundary conditions to be imposed on (8.44) are at s = 0,

1. ψ = 1, because Ψ(0) = Ψ0 and
2. dψ/ds = 0 because the gravitational force must vanish at the centre.

Analytical solutions to the Lane–Emden equation are possible only for a
few values of n, and we remember that a homogeneous (n = 0) stellar density
distribution has already been excluded as a viable solutions of the general
power-law phase-space distribution function.

The Plummer Model

A particularly useful case is

ψ =
1

√
1 + 1

3 s
2
. (8.46)

It follows immediately that this is a solution of the Lane–Emden equation for
n = 5 and it also satisfies the two boundary conditions above and so consti-
tutes a physically sensible potential. By integrating the Poisson equation, it
can be shown that the total mass of this distribution function is finite,

M∞ =
√

3 Ψ0 b/G, (8.47)

although the density distribution has no boundary. The distribution function
is

fm(E) =

{

F
(
Ψ − 1

2 v
2
) 7

2 , v2 < 2Ψ,
0 , v2 ≥ 2Ψ,

(8.48)

with the relative potential

Ψ =
Ψ0√

1 + 1
3

(
r
b

)2
(8.49)

and density law
ρm =

ρm,0
(
1 + 1

3

(
r
b

)2
) 5

2
(8.50)

with the above total mass. This density distribution is known as the Plummer
model, named after Plummer (1911) who showed that the density distribution
that results from this model provides a reasonable and, in particular, very
simple analytical description of globular clusters. The Plummer model is, in
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fact, a work-horse for many applications in stellar dynamics because many of
its properties such as the projected velocity dispersion profile can be calculated
analytically. Such formulae are useful for checking numerical codes used to set
up models of stellar systems.

Properties of the Plummer Model

Some useful analytical results can be derived for the Plummer density law
(see also Heggie & Hut 2003, their p. 73 for another compilation). For the
Plummer law of mass Mecl, the mass-density profile (8.50) can be written as

ρm(r) =
3Mecl

4π r3pl

1
[

1 +
(

r
rpl

)2
] 5

2
, (8.51)

where rpl is the Plummer scale length. The central number density is thus

ρc =
3N

4π r3pl

. (8.52)

The mass within radius r follows from M(r) = 4π
∫ r

0
ρm(r′) r′

2
dr′,

M(r) = Mecl

(
r

rpl

)3

[

1 +
(

r
rpl

)2
] 3

2
. (8.53)

Thus,

rpl contains 35.4% of the mass,
2 rpl contain 71.6%,
5 rpl contain 94.3% and
10 rpl contain 98.5% of the total mass.

For the half-mass radius we have

rh = (2
2
3 − 1)−

1
2 rpl ≈ 1.305 rpl. (8.54)

The projected surface mass density, ΣM (R) = 2
∫∞
0

ρm(r) dz, where R is
the projected radial distance from the cluster centre and Z is the integration
variable along the line-of-sight (r2 = R2 + Z2) is

Σρ(R) =
Mecl

π r2pl

1
[

1 +
(

R
rpl

)2
]2 . (8.55)

We assume there is no mass segregation so that the mass-to-light ratio, Υ ≡
(M/L), measured in some photometric system is independent of radius. The
integrated light within projected radius R is
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I(R) = (1/Υ )
∫ R

0

Σρ(R′) 2π R′ dR′, (8.56)

I(R) =
Mecl r

2
pl

Υ

[
1
r2pl

− 1
R2 + r2pl

]

. (8.57)

Thus, rpl is the half-light radius of the projected star cluster, I(rpl) =
0.5 I(∞).

In the above equations ρ(r) = ρm(r)/m, N(r) = M(r)/m and Σn =
Σρ/m are, respectively, the stellar number density, the number of stars within
radius r and the projected surface number density profile if there is no mass
segregation within the cluster. Thus the average stellar mass, m, is constant.

The velocity dispersion can be calculated at any radius from the Jeans
equation (8.120). For an isotropic velocity distribution (σ2

θ = σ2
φ = σ2

r), such
as the Plummer model, the Jeans equation yields

σ2
r(r) =

1
ρ(r)

∫ ∞

r

ρ(r′)
GM(r′)

r2
dr′, (8.58)

because dφ(r)/dr = GM(r)/r2 and the integration bounds have been chosen
to make use of the vanishing ρm(r) as r → ∞. Note that the above equation
is also valid if M(r) consists of more than one spherical component such as a
distinct core plus an extended halo. Combining (8.51), (8.53) and (8.58) we
are led to

σ2(r) =
(
GMecl

2 rpl

)
1

[

1 +
(

r
rpl

)2
] 1

2
, (8.59)

where σ(r) is the three-dimensional velocity dispersion of the Plummer sphere
at radius r, σ2(r) =

∑
k=r,θ,φ σ

3
k(r) or σ2(r) = 3σ2

1D(r) because isotropy is
assumed.

A star with mass m positioned at r and with speed v =
(∑3

k=1 v
2
k

)1/2

can escape from the cluster if it has a total energy ebind = ekin + epot =
0.5mv2 + mφ(r) ≥ 0 so that v ≥ vesc(r). So the escape speed at radius
r is vesc(r) =

√
2 |φ(r)|. The potential at r is given by the mass within r

plus the potential contributed by the surrounding matter. It is calculated by
integrating the contributions from each radial mass shell,

φ(r) = −
[

G
M(r)
r

+
∫ ∞

r

G
1
r′

ρ(r′) 4π r′
2
dr′

]

,

= −
(
GMecl

rpl

)
1

[1 + (r/rpl)2]
1/2

. (8.60)

so that

vesc(r) =
(

2GMecl

rpl

)1/2 1

[1 + (r/rpl)2]
1/4

. (8.61)
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The circular speed, vc, of a star moving on a circular orbit at a distance
r from the cluster centre is obtained from centrifugal acceleration, v2

c/r =
dφ(r)/dr = GM(r)/r2,

v2
c =

(
GMecl

rpl

)
(r/rpl)

2

[1 + (r/rpl)2]3/2
. (8.62)

In many but not all instances of interest, the initial cluster model is chosen
to be in the state of virial equilibrium. That is, the kinetic and potential
energies of each star balance so that the whole cluster is stationary. The
scalar virial theorem,

2K +W = 0, (8.63)

where K and W are the total kinetic and potential energy of the cluster,7

K =
1
2

∫ ∞

0

ρ(r)σ2(r) 4πr2dr,

=
3π
64

GM2
ecl

rpl
, for the Plummer sphere, (8.64)

W =
1
2

∫ ∞

0

φ(r) ρ(r) 4πr2dr,

= −3π
32

GM2
ecl

rpl
for the Plummer sphere. (8.65)

The total, or binding, energy of the cluster, Etot = W +K, is

Etot = −K =
1
2
W. (8.66)

The characteristic three-dimensional velocity dispersion of a cluster can be
defined as σ2

cl ≡ 2K/Mecl so that

σ2
cl =

3π
32

GMecl

rpl
, (8.67)

≡ GMecl

rgrav
, (8.68)

≡ s2
(
GMecl

2 rh

)

, (8.69)

which introduces the gravitational radius of the cluster, rgrav ≡ GM2
ecl/|W |.

For the Plummer sphere rgrav = (32/3π)rpl = 3.4 rpl and the structure factor

s =
(

6 × 1.305π
32

) 1
2

,

≈ 0.88. (8.70)
7Equation (3.251.4) on p. 295 of Gradshteyn & Ryzhik (1980) is useful to solve

the integrals for the Plummer sphere.
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We define the virial ratio by

Q =
K

|W | , (8.71)

so that a cluster can initially be in three possible states

Q

⎧
⎪⎨

⎪⎩

= 1
2 , virial equilibrium,

> 1
2 , expanding,

< 1
2 , collapsing.

(8.72)

Note that if initially Q < 1/2, the value Q = 1/2 will be reached temporarily
during collapse, after which Q increases further until the cluster settles in
virial equilibrium after this violent relaxation phase (Binney & Tremaine 1987,
p. 271).

The characteristic crossing time through the Plummer cluster,

tcr ≡
2 rpl

σ1D,cl
, (8.73)

=
(

128
πG

) 1
2

M
− 1

2
ecl r

3
2
pl, (8.74)

with the characteristic one-dimensional velocity dispersion, σ1D,cl = σcl/
√

3.
Observationally, the core radius is that radius where the projected surface

density falls to half its central value. For a real cluster it is much easier to
determine than the other characteristic radii. For the Plummer sphere,

Rcore =
(√

2 − 1
) 1

2
rpl = 0.64 rpl, (8.75)

from (8.55), with the assumption that the mass-to-light ratio, Υ, is indepen-
dent of radius. For a King model

Rking
core =

(
9

4πG
σ2

ρm(0)

) 1
2

, (8.76)

is the King radius. From (8.59), σ2(0) = GMecl/(2 rpl) and from (8.51),
ρm(0) = 3Mecl/(4π r3pl) so that

rpl =
(

6
4πG

σ(0)2

ρm(0)

) 1
2

= 0.82 Rking
core . (8.77)

The Singular Isothermal Model

Another useful set of distribution functions can be arrived at by considering
n = ∞. The Lane–Emden equation is not well defined in this limit, but for a
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polytropic gas sphere (8.45) implies γ → 1 as n → ∞. Thus p = K ρm, which is
the equation of state of an isothermal ideal gas with K = kB T/mp, where kB

is Boltzmann’s constant, T the temperature and mP the mass of a gas particle.
From the equation of hydrostatic support, dp/dr = −ρm(GM(r)/r2), where
M(r) is the mass within r, the following equation can be derived

d
dr

(

r2
d ln ρm

dr

)

= −Gmp

kB T
4π r2 ρm. (8.78)

For a distribution function (our ansatz)

fm(E) =
ρm,1

(2π σ2)
3
2
e

E
σ2 , (8.79)

where σ2 is a new quantity related to a velocity dispersion and E = Ψ− v2/2,
one obtains, from ρm =

∫
fm(E) 4π v2 dv,

Ψ(r) = ln
(
ρm(r)
ρm,1

)

σ2. (8.80)

From the Poisson equation it then follows that

σ = const =
kB T

mp
(8.81)

for consistency with (8.78).
Therefore, the structure of an isothermal, self-gravitating sphere of ideal

gas is identical to the structure of a collisionless system of stars whose phase-
space mass-density distribution function is given by (8.79). Note that f(E) is
non-zero at all E (cf. King’s models below).

The number-distribution function of velocities is F (v) =
∫
all x

f(E) d3x, i.e.

F (v) = F0 e
− v2

2 σ2 . (8.82)

This is the Maxwell–Boltzmann distribution, which results from the kinetic
theory of atoms in a gas at temperature T that are allowed to bounce off
each other elastically. This exact correspondence between a stellar-dynamical
system and a gaseous polytrope holds only for an isothermal case (n = ∞).

The total number of stars in the system is Ntot = Ntot

∫∞
0

F (v) 4π v2 dv
and the number of stars in the speed interval v to v + dv is

dN = F (v) 4π v2 dv = Ntot
1

(2πσ2)
3
2
e−

v2

2 σ2 4π v2 dv, (8.83)

which is the Maxwell–Boltzmann distribution of speeds. The mean-square
speed of stars at a point in the isothermal sphere is
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v2 =
4π

∫∞
0

σ2 F (v) dv
4π

∫∞
0

F (v) dv
= 3σ2 (8.84)

and the 1D velocity dispersion is σ1D = σα = σ, where α = r, θ, φ, x, y, z, ....
To obtain the radial mass-density of this model, the ansatz ρm = C r−b

together with the Poisson equation (8.78) implies

ρm(r) =
σ2

2πG
1
r2
. (8.85)

That is, a singular isothermal sphere.

The Isothermal Model

The above model has a singularity at the origin. This is unphysical. In order to
remove this problem, it is possible to force the central density to be finite. To
this end new dimensionless variables are introduced, ρ̃m ≡ ρm/ρm,0, r̃ ≡ r/r0.
The density ρ̃m is the finite central density, while r0 = RKing

core is the King radius
(8.76) at which the projected density falls to 0.5013 (i.e. about half) its central
value. The radius r0 is also sometimes called the core radius (but see further
below for King models on p. 211). The Poisson equation (8.78) then becomes

d
dr̃

(

r̃2
d ln ρ̃m

dr̃

)

= −9 ρ̃m r̃2. (8.86)

This differential equation must be solved numerically for ρ̃m(r̃) subject to the
boundary conditions (as before),

ρ̃m(r̃ = 0) = 1,
dρ̃m

dr̃

∣
∣
∣
∣
∣
r̃=0

= 0. (8.87)

The solution is the isothermal sphere.
By imposing physical reality (central non-singularity) on our mathematical

ansatz, we end up with a density profile that cannot be arrived at analytically
but only numerically. The isothermal density sphere must be tabulated in the
computer with entries such as

r/r0, log10

(
ρ

ρ0

)

and log10

(
Σ

r0 ρ0

)

, (8.88)

where Σ is the projected density (Binney & Tremaine 1987, for example see
their Table 4.1 and Fig. 4.7 of). The circular velocity, vc(r) = GM(r)/r of the
isothermal sphere is obtained by integrating Poisson’s equation (8.78) from
r = 0 to r = r′ with r2(d ln ρm/dr) = −(G/σ2)M(r) and

v2
c (r) = −σ2 d ln ρm(r)

d ln r
. (8.89)
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Numerical solution of differential (8.86) shows that vc →
√

2σ (constant) for
large r.

The isothermal sphere is a useful model for describing elliptical galaxies,
within a few core radii, and disc galaxies because of the constant rotation
curve. However, combining the two equations for v2

c above, one finds that
M(r) ≈ (2σ2/G) r for large r, i.e. the isothermal sphere has an infinite mass
as it is not bounded.

The Lowered Isothermal or King Model

We have thus seen that the class of models with n = ∞ contain as the simplest
case the singular isothermal sphere. By forcing the central density to be finite,
we are led to the isothermal sphere which, however, has an infinite mass. The
final model considered here within this class is the lowered isothermal model,
or the King model,8 which forces not only a finite central density but also
a cutoff in radius. These have a distribution function similar to that of the
isothermal model, except for a cutoff in energy,

fm(E) =

{
ρm,1

(2 π σ2)
3
2

(
e

E
σ2 − 1

)
: E > 0,

0 : E ≤ 0.
(8.90)

The density distribution becomes

ρm = ρm,1

[

e
Ψ
σ2 erf

(√
Ψ
σ

)

−
√

4Ψ
π σ2

(

1 +
2Ψ
3σ2

)]

(8.91)

with integration only to E = 0 as before. The Poisson (8.78) becomes

d
dr̃

(

r̃2
d ln ρ̃m

dr̃

)

= −4πGρm,1 r
2

[

e
Ψ
σ2 erf

(√
Ψ
σ

)

−
√

4Ψ
π σ2

(

1 +
2Ψ
3σ2

)]

.

(8.92)

Again, this differential equation must be solved numerically for Ψ(r) subject
to the boundary conditions,

Ψ(0),
dΨ
dr

|r=0 = 0. (8.93)

The density vanishes at r = rtid (the tidal radius), where Ψ(r = rtid) = 0
also. A King model is thus limited in mass and has a finite central density,

8Note that King (1962) suggested a three-parameter (mass, core radius and cut-
off/tidal radius), empirical, projected (2D) density law that fits globular clusters
very well. These do not have information on the velocity structure of the clusters.
The King (non-analytical) 6D models, which are solutions of the Jeans equation
((8.120) below) and discussed here, are published by King (1966).
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Fig. 8.5. The King concentration parameter W0 as a function of c (cf. with Fig. 4–10
of Binney & Tremaine 1987). This figure has been produced by Andreas Küpper

but the parameter σ is not the velocity dispersion. It is rather related to the
depth of the potential via the concentration parameter

Wo ≡ Ψ(0)
σ2

. (8.94)

The concentration is defined as

c ≡ log10

(
rtid
ro

)

. (8.95)

For globular clusters, 3 < Wo < 9, 0.75 < c < 1.75 and the relation between
Wo and c is plotted in Fig. 8.5. Note also that the true core radius defined as
Σ(Rc) = (1/2)Σ(0), where Σ(R) is the projected density profile and R is the
projected radius, is unequal in general to the King radius, r0 (8.76). Finally,
it should be emphasised that it is not physical to use an arbitrary rtid. The
tidal radius must always match the value dictated by the cluster mass and
the host galaxy (e.g. (8.3)).

8.2.2 Comparison: Plummer vs King Models

The above discussion has served to show how various popular models can be
followed through from a power-law distribution function (8.41) with different
indices n. The Plummer model (p. 205) and the King model (p. 212) are par-
ticularly useful for describing star clusters. The Plummer model is determined
by two parameters, the mass, M , and the scale radius, rh ≈ 1.305 rpl. The
King model requires three parameters, M , a scale radius, rh, and a concen-
tration parameter, W0 or c. Which subset of parameters yield models that are
similar in terms of the overall density profile?
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Fig. 8.6. Comparison of a King model (solid curve) with a Plummer model (dashed
curve). Both have the same mass and that Plummer model is sought, which min-
imises the unweighted reduced chi-squared between the two models. The upper panel
shows a high-concentration King model with c = 2.55 and W0 = 11 and the best-fit
Plummer model has rPlummer

h = 0.366 rKing
h (rh ≡ rh), as stated in the panel. The

lower panel compares the two best matching models for the case of an intermediate-
concentration King model. This figure was produced by Andreas Küpper

To answer this, the mass is set to be constant. King models with different
W0 and rh are computed and Plummer models are sought, which minimise
the reduced chi-squared value between the two density profiles. Figure 8.6
shows two examples of best-matching density profiles, and Fig. 8.7 reveals
the family of Plummer profiles that best match King models with different
concentrations. Note that a good match between the two is only obtained for
intermediate-concentration King models (2.5 ≤ W0 ≤ 7.5).

8.2.3 Discretisation

To set up a computer model of a stellar system withN particles (e.g. stars), the
distribution functions need to be sampled N times. The relevant distribution
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Fig. 8.7. The ratio rPlummer
h /rKing

h (rh ≡ rh) for the best-matching Plummer and
King models (Fig. 8.6) are plotted as a function of the King concentration param-
eter W0. The uncertainties are unweighted reduced chi-squared values between the
two density profiles. It is evident that there are no well-matching Plummer models
for low- (c < 2.5) and high-concentration (c > 7.5) King models. This figure was
produced by Andreas Küpper

functions are the phase-space distribution function, the stellar initial mass
function and the three distribution functions governing the properties of bi-
nary stars (periods, mass-ratios and eccentricities).

Assume the distribution function depends on the variable ζmin ≤ ζ ≤ ζmax

(e.g. stellar mass, m). There are various ways of sampling from a distribution
function (Press et al. 1992), but the most efficient way is to use a generating
function if one exists. Consider the probability X(ζ) of encountering a value
for the variable in the range ζmin to ζ,

X(ζ) =
∫ ζ

ζmin

p(ζ ′) dζ ′, (8.96)

with X(ζmin) = 0 ≤ X(ζ) ≤ X(ζmax) = 1, and p(ζ) is the distribution func-
tion normalised so that the latter equal sign holds (X = 1). p(ζ) is the prob-
ability density. The inverse of (8.96), ζ(X), is the generating function. It is a
one-to-one map of the uniform distribution X ∈ [0, 1] to ζ ∈ [ζmin, ζmax].
If an analytical inverse does not exist, it can be found numerically in a
straightforward manner, for example, by constructing a table of X, ζ and
then interpolating this table to obtain a ζ for a given X.

Example: The Power-Law Stellar Mass Function

As an example, consider the distribution function

ξ(m) = km−α, α = 2.35; 0.5 ≤ m

M�
≤ 150. (8.97)
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The probability density is p(m) = kp m
−α and

∫ 150

0.5
p(m) dm = 1 ⇒ kp =

0.53. Thus

X(m) =
∫ m

0.5

p(m) dm = kp
1501−α − 0.51−α

1 − α
(8.98)

and the generating function for stellar masses becomes

m(X) =
[

X
1 − α

kp
+ 0.51−α

] 1
1−α

. (8.99)

It is easy to programme this into an algorithm. Obtain a random variate X
from a random number generator and use the above generating function to
get a corresponding mass, m. Repeat N times.

Generating a Plummer Model

Perhaps the most useful and simplest model of a bound stellar system is the
Plummer model (p. 205). It is worth introducing the discretisation of this
model in some detail, because analytical formulae go a long way, which is
important for testing codes. A condensed form of this material is available in
Aarseth, Hénon and Wielen (1974).

The mass within radius r is (rpl = b here)

M(r) =
∫ r

0

ρm(r′) 4π r′
2
dr′ = Mcl

(r/rpl)
3

[
1 + (r/rpl)

2
] 3

2
. (8.100)

A number uniformly distributed between zero and one can then be defined,

X1(r) =
M(r)
Mcl

=
ζ3

[1 + ζ2]
, (8.101)

where ζ ≡ r/rpl and X1(r = ∞) = 1. This function can be inverted to
yield the generating function for particle distances distributed according to a
Plummer density law,

ζ(X1) =
(
X

− 2
3

1 − 1
)− 1

2
. (8.102)

The coordinates of the particles x, y, z, r2 = (ζ rpl)2 = x2 + y2 + z2 can be
obtained as follows. For a given particle we already have r. For all possible
x and y, z has a uniform distribution, p(z) = const = 1/(2 r) over the range
−r ≤ z ≤ +r. Thus, for a second random variate between zero and one,

X2(z) =
∫ z

−r

p(z′) dz′ =
1
2 r

(z + r) , (8.103)

with X2(+r) = 1. The generating function for z becomes
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z(X2) = 2 r X2 − r. (8.104)

Having obtained r and z, x and y can be arrived at as follows, noting the
equation for a circle, r2 − z2 = x2 + y2. Choose a random angle θ, which is
uniformly distributed over the range 0 ≤ θ ≤ 2π. Thus p(θ) = 1/(2π) and
the third random variate becomes

X3(θ) =
∫ θ

0

1
2π

dθ′ =
θ

2π
. (8.105)

The corresponding generating function is

θ(X3) = 2πX3. (8.106)

Finally,

x =
(
r2 − z2

) 1
2 cosθ; and y =

(
r2 − z2

) 1
2 sinθ. (8.107)

The velocity for each particle cannot be obtained as simply as the positions.
In order for the initial stellar system to be in virial equilibrium, the potential
and kinetic energy need to balance according to the scalar virial theorem.
This is ensured by forcing the velocity distribution function to be that of the
Plummer model,

fm(εe) =

{(
24

√
2

2 π3
r2
pl

(G Mcl)5

)
(−εe)

7
2 , εe ≤ 0,

0 , εe > 0,
(8.108)

where
εe(r, v) = Φ(r) + (1/2) v2 (8.109)

is the specific energy per star and

Φ(r) = −GMcl

rpl

(

1 +
(

r

rpl

)2
)− 1

2

(8.110)

is the potential. Now, the Plummer distribution function can be expressed in
terms of r and v,

f(r, v) = fo

(

−Φ(r) − 1
2
v2

) 7
2

, (8.111)

for a normalisation constant fo and dropping the mass subscript, because we
assume the positions and velocities do not depend on particle mass. With the
escape speed at distance r from the Plummer centre, vesc(r) =

√
−2Φ(r) ≡

v/ζ, it follows that

f(r, v) = fo

(
1
2
vesc

)7 (
1 − ζ2

) 7
2 . (8.112)
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The number of particles with speeds in the interval v to v + dv is

dN = f(r, v) 4π v2 dv ≡ g(v) dv. (8.113)

Thus

g(v) = 16π fo

(
1
2
vesc(r)

)9 (
1 − ζ2(r)

) 7
2 ζ2(r), (8.114)

that is,
g(ζ) = go ζ

2(r)
(
1 − ζ2(r)

) 7
2 , (8.115)

for a normalisation constant go determined by demanding that

X4(ζ = 1) = 1 =
∫ 1

0

g(ζ ′) dζ ′ (8.116)

for a fourth random number variate X4(ζ) =
∫ ζ

0
g(ζ ′) dζ ′. It follows that

X4(ζ) =
1
2
(
5 ζ3 − 3 ζ5

)
. (8.117)

This cannot be inverted to obtain an analytical generating function for ζ =
ζ(X4). Therefore, numerical methods need to be used to solve (8.117). For
example, one way to obtain ζ for a given random variate X4 is to find the
root of the equation 0 = (1/2) (5 ζ3 −3 ζ5)−X4, or one can use the Neumann
rejection method (Press et al. 1992).

The following procedure can be implemented to calculate the velocity vec-
tor of a particle for which r and ζ are already known from above. Compute
vesc(r) so that v = ζ vesc. Each speed v is then split into its components
vx, vy, vz, assuming velocity isotropy using the same algorithm as above for
x, y, z:

vz(X5) = (2X5 − 1) v; θ(X6) = 2πX6; (8.118)

vx =
√
v2 − v2

z cosθ; vy =
√
v2 − v2

z sinθ. (8.119)

Note that a rotating Plummer model can be generated by simply switching
the signs of vx and vy so that all particles have the same direction of motion
in the x, y plane.

As an aside, an efficient numerical method to set up triaxial ellipsoids
with or without an embedded rotating disc is described by Boily, Kroupa &
Peñarrubia-Garrido (2001).

Generating an Arbitrary Spherical, Non-Rotating Model

In most cases an analytical density distribution is not known (e.g. the
King models above). Such numerical models can nevertheless be discretised
straightforwardly as follows. Assume that the density distribution, ρ(r), is
known. Compute M(r) and Mcl. Define X(r) = M(r)/Mcl, as above. We thus
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have a numerical grid of numbers r, M(r), X(r). For a given random variate
X ∈ [0, 1], interpolate r from this grid. Compute x, y, z as above.

If the distribution function of speeds is too complex to yield an analytical
generating function X(ζ) for the speeds ζ, we can resort to the following
procedure. One of the Jeans equations for a spherical system is

d
dr

(
ρ(r)σr(r)2

)
+
ρ(r)
r

[
2σ2

r(r) −
(
σθ(r)2 + σφ(r)2

)]
= −ρ(r) dΦ(r)

dr
.

(8.120)
For velocity isotropy, σ2

r = σ2
θ = σ2

φ, this reduces to

d
(
ρ σ2

r

)

dr
= −ρ dΦ

dr
. (8.121)

Integrating this by making use of ρ → 0 as r → ∞ and remembering that
dΦ/dr = −GM/r2,

σ2
r(r) =

1
ρ(r)

∫ ∞

r

ρ(r′)
GM(r′)

r′2
dr′. (8.122)

For each particle at distance r, a one-dimensional velocity dispersion, σr(r), is
thus obtained. Choosing randomly from a Gaussian distribution with disper-
sion σi, i = r, θ, φ, x, y, z, then gives the velocity components (e.g. vx, vy, vz)
for this particle.

Rotating Models

Star clusters are probably born with some rotation because the pre-cluster
cloud core is likely to have contracted from a cloud region with differential
motions that do not cancel. How large this initial angular momentum content
of an embedded cluster is remains uncertain because the dominant motions
are random and chaotic owing to the turbulent velocity field of the gas. Once
the star-formation process is quenched as a result of gas blow-out (Sect. 8.1.1),
the cluster expands. This must imply substantial reduction in the rotational
velocity. A case in point is ω Cen, which has been found to rotate with a peak
velocity of about 7 km s−1 (Pancino et al. 2007, and references therein).

A setup for rotating cluster models is easily made, for instance, by increas-
ing the tangential velocities of stars by a certain factor. A systematic study
of relaxation-driven angular momentum re-distribution within star clusters
has become available through the work of the group of Rainer Spurzem and
Hyung-Mok Lee and the interested reader is directed to that body of work
(Kim et al. 2008, and references therein). One important outcome of this
work is that core collapse is substantially accelerated in rotating models. The
primary reason for this is that increased rotational support reduces the role of
support through random velocities for the same cluster dimension. Thus, the
relative stellar velocities decrease and the stars exchange momentum and en-
ergy more efficiently, enhancing two-body relaxation and thence the approach
towards energy equipartition.
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8.2.4 Cluster Birth and Young Clusters

Some astrophysical issues related to the initial conditions of star clusters have
been raised in Sect. 8.1.1. In order to address most of these issues numerical
experiments are required. The very initial phase, the first 0.5Myr, can only
be treated through gas-dynamical computations that, however, lack the nu-
merical resolution for the high-precision stellar-dynamical integrations, which
are the essence of collisional dynamics during the gas-free phase of a cluster’s
life. This gas-free stage sets in with the blow out of residual gas at an age of
about 0.5–1.5Myr. The time 0.5–1.5Myr is dominated by the physics of stel-
lar feedback and radiation transport in the residual gas as well as energy and
momentum transfer to it through stellar outflows. The gas-dynamical com-
putations cannot treat all the physical details of the processes acting during
this critical time, which also include early stellar-dynamical processes such as
mass segregation and binary–binary encounters.

One successful procedure to investigate the dominant macroscopic physical
processes of these stellar-dynamical processes, gas blow-out and the ensuing
cluster expansion, through to the long-term evolution of the remnant cluster,
is to approximate the residual gas component as a time-varying potential in
which the young stellar population is trapped. The pioneering work using
this approach has been performed by Lada, Margulis & Dearborn (1984),
whereby the earlier numerical work by Tutukov (1978) on open clusters and
later N -body computations by Goodwin (1997a,b, 1998) on globular clusters
must also be mentioned in this context.

The physical key quantities that govern the emergence of embedded clus-
ters from their clouds and their subsequent appearance are (Baumgardt,
Kroupa & Parmentier 2008, Sect. 8.1.1):

• sub-structuring,
• initial mass segregation,
• the dynamical state at feedback termination (dynamical equilibrium?, col-

lapsing? or expanding?),
• the star-formation efficiency, ε,
• the ratio of the gas-expulsion time-scale to the stellar crossing time through

the embedded cluster, τgas/tcross and
• the ratio of the embedded-cluster half-mass radius to its tidal radius, rh/rt.

It becomes rather apparent that the physical processes governing the
emergence of star clusters from their natal clouds is terribly messy, and the
research-field is clearly observationally driven. Observations have shown that
star clusters suffer substantial infant weight loss and probably about 90% of all
clusters disperse altogether (infant mortality). This result is consistent with
the observational insight that clusters form in a compact configuration with
a low star-formation efficiency (0.2 ≤ ε ≤ 0.4) and that residual-gas blow-out
occurs on a time-scale comparable or even faster than an embedded-cluster
crossing time-scale (Kroupa 2005). Theoretical work can give a reasonable
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description of these empirical findings by combining some of the above pa-
rameters, such as an effective star-formation efficiency as a measure of the
amount of gas removed for a cluster of a given stellar mass if this cluster were
in dynamical equilibrium at feedback termination, and that the gas and stars
were distributed according to the same radial density function with the same
scaling radius.

Embedded Clusters: One way to parameterise an embedded cluster is to set
up a Plummer model in which the stellar positions follow a density law with
the parameters Mecl and rpl and the residual gas is a time-varying Plummer
potential initially with the parameters Mgas and rpl, i.e. modelled with the
same radial density law. The effective star-formation efficiency is then given by
(8.2). Stellar velocities must then be calculated from a Plummer law with total
mass Mecl +Mgas following the recipes of Sect. 8.2.3. The gas can be removed
by evolving Mgas or rpl. For example, Kroupa, Aarseth & Hurley (2001) and
Baumgardt, Kroupa & Parmentier (2008) assumed the gas mass decreases
exponentially after an embedded phase lasting about 0.5Myr during which
the cluster is allowed to evolve in dynamical equilibrium. Bastian & Goodwin
(2006), as another example, do not include a gas potential but take the initial
velocities of stars to be 1/

√
ε times larger, vembedded = (1/

√
ε) vno gas, to model

the effect of instantaneous gas removal. Many variations of these assumptions
are possible and Adams (2000), for example, investigated the fraction of stars
left in a cluster remnant if the radial scale length of the gas is different to that
of the stars, i.e. for a radially dependent star-formation efficiency, ε(r).

Subclustering: Initial subclustering has been barely studied. Scally & Clarke
(2002) considered the degree of sub-structuring of the ONC allowed by its

current morphology, while Fellhauer & Kroupa (2005) computed the evolution
of massive star-cluster complexes, assuming each member cluster in the com-
plex undergoes its own individual gas-expulsion process. McMillan, Vesperini
& Portegies Zwart (2007) showed that initially mass-segregated subclusters
retain mass segregation upon merging. This is an interesting mechanism for
accelerating dynamical mass segregation because it occurs faster in smaller-N
systems, which have a shorter relaxation time.

The simplest initial conditions for such numerical experiments are to set up
the star-cluster complex (or protoONC-type cluster, for example) as a Plum-
mer model, where each particle is a smaller subcluster. Each subcluster is also
a Plummer model, embedded in a gas potential given as a Plummer model.
The gas-expulsion process from each subcluster can be treated as above.

Mass Segregation and Gas Blow-Out: The problem of how initially mass-
segregated clusters react to gas blow-out has not been studied at all in the
past. This is due partially to the lack of convenient algorithms to set up mass-
segregated clusters that are in dynamical equilibrium and which do not go
into core collapse as soon as the N -body integration begins. An interesting
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consequence here is that gas blow-out will unbind mostly the low-mass stars,
while the massive stars are retained. These, however, evolve rapidly so that
the mass lost from the remnant cluster owing to the evolution of the massive
stars can become destructive, enhancing infant mortality.

Ladislav S̆ubr has developed a numerically efficient method to set up ini-
tially mass-segregated clusters close to core-collapse based on a novel concept
that uses the potentials of subsets of stars ordered by their mass (S̆ubr, Kroupa
& Baumgardt 2008).9 An alternative algorithm based on ordering the stars
by increasing mass and increasing total energy that leads to total mass seg-
regation, and also to a model that is not in core collapse and which therefore
evolves towards core collapse, has been developed by Baumgardt, Kroupa &
de Marchi (2008). An application concerning the effect on the observed stellar
mass function in globular clusters shows that gas expulsion leads to bottom-
light stellar mass functions in clusters with a low concentration, consistent
with observational data (Marks, Kroupa & Baumgardt 2008).

8.3 The Stellar IMF

The stellar initial mass function (IMF), ξ(m) dm, where m is the stellar mass,
is the parent distribution function of the masses of stars formed in one event.
Here, the number of stars in the mass interval m to m+ dm is

dN = ξ(m) dm. (8.123)

The IMF is, strictly speaking, an abstract theoretical construct because any
observed system of N stars merely constitutes a particular representation of
this universal distribution function, if such a function exists (Elmegreen 1997;
Máız Apellániz & Úbeda 2005). The probable existence of a unique ξ(m) can
be inferred from the observations of an ensemble of systems each consisting of
N stars (e.g. Massey 2003). If, after corrections for (a) stellar evolution, (b)
unknown multiple stellar systems and (c) stellar-dynamical biases, the indi-
vidual distributions of stellar masses are similar within the expected statistical
scatter, we (the community) deduce that the hypothesis that the stellar mass
distributions are not the same can be excluded. That is, we make the case for
a universal, standard or canonical stellar IMF within the physical conditions
probed by the relevant physical parameters (metallicity, density, mass) of the
populations at hand.

Related overviews of the IMF can be found in Kroupa (2002a); Chabrier
(2003); Bonnell, Larson & Zinnecker (2007); Kroupa (2007a), and a review

with an emphasis on the metal-rich problem is available in Kroupa (2007b).
Zinnecker & Yorke (2007) provide an in-depth review of the formation and
distribution of massive stars. Elmegreen (2007) discusses the possibility that
star-formation occurs in different modes with different IMFs.

9The C-language software package plumix may be downloaded from the website
http://www.astro.uni-bonn.de/~webaiub/english/downloads.php.

http://www.astro.uni-bonn.de/~webaiub/english/downloads.php
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8.3.1 The Canonical or Standard Form of the Stellar IMF

The canonical stellar IMF is a two-part-power law (8.128). The only structure
found with confidence so far is the change of index from the Salpeter/Massey
value to a smaller one near 0.5M�

10

ξ(m) ∝ m−αi , i = 1, 2
(8.124)

α1 = 1.3 ± 0.3, , 0.08 ≤ m/M� ≤ 0.5,
α2 = 2.3 ± 0.5, , 0.5 ≤ m/M� ≤ mmax,

where mmax ≤ mmax∗ ≈ 150M� follows from Fig. 8.1. Brown dwarfs have
been found to form a separate population with α0 ≈ 0.3± 0.5, (8.129) (Thies
& Kroupa 2007).

It has been corrected for bias through unresolved multiple stellar systems
in the low-mass (m < 1M�) regime (Kroupa, Gilmore & Tout 1991) by a
multi-dimensional optimisation technique. The general outline of this tech-
nique is as follows (Kroupa, Tout & Gilmore 1993). First, the correct form of
the stellar-mass–luminosity relation is extracted using observed stellar bina-
ries and theoretical constraints on the location, amplitude and shape of the
minimum of its derivative, dm/dMV , near m = 0.3M�,MV ≈ 12,MI ≈ 9 in
combination with the observed shape of the nearby and deep Galactic-field
stellar luminosity function (LF)

Ψ(MV ) = −
(

dm
dMV

)−1

ξ(m), (8.125)

where dN = Ψ(MV ) dMV is the number of stars in the magnitude inter-
val MV to MV + dMV . Once the semi-empirical mass–luminosity relation of
stars, which is an excellent fit to the most recent observational constraints by
Delfosse et al. (2000), is established, a model of the Galactic field is calculated
with the assumption that a parameterised form for the MF and different val-
ues for the scale-height of the Galactic disc and different binary fractions in
it. Measurement uncertainties and age and metallicity spreads must also be
considered in the theoretical stellar population. Optimisation in this multi-
parameter space (MF parameters, scale-height and binary population) against
observational data leads to the canonical stellar MF for m < 1M�.

One important result from this work is the finding that the LF of main-
sequence stars has a universal sharp peak near MV ≈ 12,MI ≈ 9. It results
from changes in the internal constitution of stars that drive a non-linearity in
the stellar mass–luminosity relation. A consistency check is then performed
as follows. The above MF is used to create young populations of binary sys-
tems (Sect. 8.4.2) that are born in modest star clusters consisting of a few
hundred stars. Their dissolution into the Galactic field is computed with an

10The uncertainties in αi are estimated from the alpha-plot (Sect. 8.3.2), as shown
in Fig. 5 of Kroupa (2002b), to be about 95% confidence limits.
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Fig. 8.8. The Galactic field population that results from disrupted star clusters,
unification of both the nearby (solid histogram) and deep (filled circles) LFs with
one parent MF (8.124). The theoretical nearby LF (dashed line) is the LF of all
individual stars, while the solid curve is a theoretical LF with a mixture of about
50 per cent unresolved binaries and single stars from a clustered star-formation
mode. According to this model, all stars are formed as binaries in modest clusters,
which disperse to the field. The resulting Galactic field population has a binary
fraction and a mass-ratio distribution as observed. The dotted curve is the initial
system LF (100% binaries) (Kroupa 1995a,b). Note the peak in both theoretical
LFs. It stems from the extremum in the derivative of the stellar-mass–luminosity
relation in the mass range 0.2–0.4 M� (Kroupa 2002b)

N -body code and the resulting theoretical field is compared to the observed
LFs (Fig. 8.8). Further confirmation of the form of the canonical IMF comes
from independent sources, most notably by Reid, Gizis & Hawley (2002) and
also Chabrier (2003).

In the high-mass regime, Massey (2003) reports the same slope or in-
dex α3 = 2.3 ± 0.1 for m ≥ 10M� in many OB associations and star clus-
ters in the Milky Way and the Large and Small Magellanic clouds (LMC,
SMC, respectively). It is therefore suggested to refer to α2 = α3 = 2.3 as the
Salpeter/Massey slope or index, given the pioneering work of Salpeter (1955)
who derived this value for stars with masses 0.4–10M�.

Multiplicity corrections await publication once we learn more about how
the components are distributed in massive stars (cf. Preibisch et al. 1999;
Zinnecker 2003). Weidner & Kroupa (private communication) are in the pro-
cess of performing a very detailed study of the influence of unresolved binary
and higher-order multiple stars on determinations of the high-mass IMF.
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Contrary to the Salpeter/Massey index (α = 2.3), Scalo (1986) found
αMWdisc ≈ 2.7 (m ≥ 1M�) from a very thorough analysis of OB star counts
in the Milky Way disc. Similarly, the star-count analysis of Reid, Gizis &
Hawley (2002) leads to 2.5 ≤ αMWdisc ≤ 2.8, and Tinsley (1980), Kennicutt
(1983) (his extended Miller-Scalo IMF), Portinari, Sommer-Larsen & Tantalo
(2004) and Romano et al. (2005) find 2.5 ≤ αMWdisc ≤ 2.7. That αMWdisc > α2

follows naturally is shown in Sect. 8.3.4.
Below the hydrogen-burning limit (see also Sect. 8.3.3) there is substantial

evidence that the IMF flattens further to α0 ≈ 0.3 ± 0.5 (Mart́ın et al. 2000;
Chabrier 2003; Moraux et al. 2004). Therefore, the canonical IMF most likely
has a peak at 0.08M�. Brown dwarfs, however, comprise only a few per cent of
the mass of a population and are therefore dynamically irrelevant (Table 8.2).
The logarithmic form of the canonical IMF,

ξL(m) = log10 mξ(m), (8.126)

which gives the number of stars in log10 m-intervals, also has a peak near
0.08M�. However, the system IMF (of stellar single and multiple systems
combined to system masses) has a maximum in the mass range 0.4–0.6M�
(Kroupa et al. 2003).

The above canonical or standard form has been derived from detailed
considerations of Galactic field star counts and so represents an average IMF.
For low-mass stars, it is a mixture of stellar populations spanning a large
range of ages (0–10 Gyr) and metallicities ([Fe/H]≥ −1). For the massive
stars it constitutes a mixture of different metallicities ([Fe/H]≥ −1.5) and
star-forming conditions (OB associations to very dense star-burst clusters:
R136 in the LMC). Therefore, it can be taken as a canonical form and the
aim is to test the

IMF universality hypothesis that the canonical IMF constitutes the
parent distribution of all stellar populations.

Negation of this hypothesis would imply a variable IMF. Note that the work of
Massey (2003) has already established the IMF to be invariable for m ≥ 10M�
and for densities ρ ≤ 105 stars pc−3 and metallicity Z ≥ 0.002.

Finally, Table 8.2 compiles some numbers that are useful for simple insights
into stellar populations.

8.3.2 Universality of the IMF: Resolved Populations

The strongest test of the IMF universality hypothesis (p. 225) is obtained
by studying populations that can be resolved into individual stars. Because we
also seek co-eval populations with stars at the same distance and with the same
metallicity to minimise uncertainties, star clusters and stellar associations
would seem to be the test objects of choice. But before contemplating such
work, some lessons from stellar dynamics are useful.
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Table 8.2. The number fraction ηN = 100
∫ m2

m1
ξ(m) dm/

∫ mu

ml
ξ(m) dm and the

mass fraction ηM = 100
∫ m2

m1
m ξ(m) dm/Mcl, Mcl =

∫ mu

ml
m ξ(m) dm, in per cent of

BDs or main-sequence stars in the mass interval m1 to m2 and the stellar con-
tribution, ρst, to the Oort limit and to the Galactic-disc surface mass-density,
Σst = 2 hρst, near to the Sun, with ml = 0.01 M�, mu = 120 M� and the
Galactic-disc scale-height h = 250 pc (m < 1 M� Kroupa, Tout & Gilmore 1993)
and h = 90 pc (m > 1 M�, Scalo 1986). Results are shown for the canonical IMF
(8.124) for the high-mass-star IMF approximately corrected for unresolved compan-
ions (α3 = 2.7, m > 1 M�) and for the present-day mass function (PDMF, α3 = 4.5,
Scalo 1986; Kroupa, Tout & Gilmore 1993), which describes the distribution of stellar
masses now populating the Galactic disc. For gas in the disc, Σgas = 13±3 M�/pc2

and remnants Σrem ≈ 3 M�/pc2 (Weidemann 1990). The average stellar mass is
m =

∫ mu

ml
m ξ(m) dm/

∫ mu

ml
ξ(m) dm. Ncl is the number of stars that have to form in

a star cluster so that the most massive star in the population has the mass mmax.
The mass of this population is Mcl and the condition is

∫∞
mmax

ξ(m) dm = 1 with
∫ mmax
0.01

ξ(m) dm = Ncl − 1. ΔMcl/Mcl is the fraction of mass lost from the cluster
due to stellar evolution if we assume that, for m ≥ 8 M�, all neutron stars and black
holes are kicked out by asymmetrical supernova explosions but that white dwarfs are
retained (Weidemann et al. 1992) and have masses mWD = 0.084 mini + 0.444 [M�].
This is a linear fit to the data of Weidemann (2000, their Table 3) for progenitor
masses 1 ≤ m/M� ≤ 7 and mWD = 0.5 M� for 0.7 ≤ m/M� < 1. The evolution
time for a star of mass mto to reach the turn-off age is available in Fig. 20 of Kroupa
(2007a)

Mass range ηN ηM ρst Σst

[M�] [%] [%] [M�/pc3] [M�/pc2]
α3 α3 α3 α3

2.3 2.7 4.5 2.3 2.7 4.5 4.5 4.5

0.01–0.08 37.2 37.7 38.6 4.1 5.4 7.4 3.2 × 10−3 1.60
0.08–0.5 47.8 48.5 49.7 26.6 35.2 48.2 2.1 × 10−2 10.5
0.5–1 8.9 9.1 9.3 16.1 21.3 29.2 1.3 × 10−2 6.4
1–8 5.7 4.6 2.4 32.4 30.3 15.1 6.5 × 10−3 1.2
8–120 0.4 0.1 0.0 20.8 7.8 0.1 3.6 × 10−5 6.5 × 10−3

m/M� = 0.38 0.29 0.22 ρst
tot = 0.043 Σst

tot = 19.6

α3 = 2.3 α3 = 2.7 ΔMcl/Mcl

mmax Ncl Mcl Ncl Mcl mto [%]
[M�] [M�] [M�] [M�] α3 = 2.3 α3 = 2.7

1 16 2.9 21 3.8 80 3.2 0.7
8 245 74 725 195 60 4.9 1.1

20 806 269 3442 967 40 7.5 1.8
40 1984 703 1.1 × 104 2302 20 13 4.7
60 3361 1225 2.2 × 104 6428 8 22 8.0
80 4885 1812 3.6 × 104 1.1 × 104 3 32 15

100 6528 2451 5.3 × 104 1.5 × 104 1 44 29
120 8274 3136 7.2 × 104 2.1 × 104 0.7 47 33
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Star Clusters and Associations

To access a pristine population one would consider observing star-clusters
that are younger than a few Myr. However, such objects carry rather serious
disadvantages. The pre-mainsequence stellar evolution tracks are unreliable
(Baraffe et al. 2002; Wuchterl & Tscharnuter 2003) so that the derived masses
are uncertain by at least a factor of about two. Remaining gas and dust lead
to patchy obscuration. Very young clusters evolve rapidly. The dynamical
crossing time is given by (8.4) where the cluster radii are typically rh <
1 pc and for pre-cluster cloud-core masses Mgas+stars > 103 M� the velocity
dispersion σcl > 2 km s−1 so that tcr < 1Myr.

The inner regions of populous clusters have tcr ≈ 0.1Myr and thus signifi-
cant mixing and relaxation occurs there by the time the residual gas has been
expelled by any winds and photo-ionising radiation from massive stars. This
is the case in clusters with N ≥ few × 100 stars (Table 8.1).

Massive stars (m > 8M�) are either formed at the cluster centre or get
there through dynamical mass segregation, i.e. energy equipartition (Bonnell
et al. 2007). The latter process is very rapid ((8.6), p. 184) and can occur
within 1Myr. A cluster core of massive stars is therefore either primordial or
forms rapidly because of energy equipartition in the cluster and it is dynam-
ically highly unstable decaying within a few tcr, core. The ONC, for example,
should not be hosting a Trapezium because it is extremely unstable. The im-
plication for the IMF is that the ONC and other similar clusters and the OB
associations which stem from them must be very depleted in their massive
star content (Pflamm-Altenburg & Kroupa 2006).

Important for measuring the IMF are corrections for the typically high
multiplicity fraction of the very young population. However, these are very
uncertain because the binary population is in a state of change (Fig. 8.14
below). The determination of an IMF relies on the assumption that all stars
in a very young cluster formed together. However, trapping and focussing of
older field or OB association stars by the forming cluster has been found to
be possible (Sect. 8.1.1).

Thus, be it at the low-mass end or the high-mass end, the stellar mass
function seen in very young clusters cannot be the true IMF. Statistical cor-
rections for the above effects need to be applied and comprehensive N -body
modelling is required.

Old open clusters, in which most stars are on or near the main sequence,
are no better stellar samples. They are dynamically highly evolved, because
they have left their previous concentrated and gas-rich state and so they con-
tain only a small fraction of the stars originally born in the cluster (Kroupa
& Boily 2002; Weidner et al. 2007; Baumgardt & Kroupa 2007). The binary
fraction is typically high and comparable to the Galactic field, but does de-
pend on the initial density and the age of the cluster as does the mass-ratio
distribution of companions. So, simple corrections cannot be applied equally
for all old clusters. The massive stars have died and secular evolution begins
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to affect the remaining stellar population (after gas expulsion) through energy
equipartition. Baumgardt & Makino (2003) have quantified the changes of
the MF for clusters of various masses and on different Galactic orbits. Near
the half-mass radius, the local MF resembles the global MF in the cluster
but the global MF is already significantly depleted of its lower-mass stars by
about 20% of the cluster disruption time.

Given that we are never likely to learn the exact dynamical history of
a particular cluster, it follows that we can never ascertain the IMF for any
individual cluster. This can be summarised concisely with the following con-
jecture.

Cluster IMF Conjecture: The IMF cannot be extracted for any indi-
vidual star cluster.

Justification: For clusters younger than about 0.5Myr, star-formation has
not ceased and the IMF is therefore not yet assembled and the cluster
cores consisting of massive stars have already dynamically ejected members
(Pflamm-Altenburg & Kroupa 2006). For clusters with an age between 0.5
and a few Myr, the expulsion of residual gas has lead to loss of stars (Kroupa,
Aarseth & Hurley 2001). Older clusters are either still losing stars owing to
residual gas expulsion or are evolving secularly through evaporation driven by
energy equipartition (Baumgardt & Makino 2003). Furthermore, the birth
sample is likely to be contaminated by captured stars (Fellhauer, Kroupa &
Evans 2006; Pflamm-Altenburg & Kroupa 2007). There exists no time when
all stars are assembled in an observationally accessible volume (i.e. a star
cluster).

Note that the Cluster IMF Conjecture implies that individual clus-
ters cannot be used to make deductions on the similarity or not of their IMFs,
unless a complete dynamical history of each cluster is available. Notwith-
standing this pessimistic conjecture, it is nevertheless necessary to observe
and study star clusters of any age. Combined with thorough and realistic
N -body modelling the data, do lead to essential statistical constraints on the
IMF universality hypothesis. Such an approach is discussed in the next
section.

The Alpha Plot

Scalo (1998) conveniently summarised a large part of the available observa-
tional constraints on the IMF of resolved stellar populations with the alpha
plot, as used by Kroupa (2001, 2002b) for explicit tests of the IMF univer-

sality hypothesis given the cluster IMF conjecture. One example is
presented in Fig. 8.9, which demonstrates that the observed scatter in α(m)
can be readily understood as being due to Poisson uncertainties (see also
Elmegreen 1997, 1999) and dynamical effects, as well as arising from biases
through unresolved multiple stars. Furthermore, there is no evident systematic
change of α at a given m with metallicity or density of the star-forming cloud.
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Fig. 8.9. The alpha plot. The power-law index, α, is measured over stellar mass-
ranges and plotted at the mid-point of the respective mass range. The power-law
indices are measured on the mass function of system masses, where stars not in
binaries are counted individually. Open circles are the observations from open clus-
ters and associations of the Milky Way and the Large and Small Magellanic clouds
collated mostly by Scalo (1998). The open stars (crosses) are theoretical star clus-
ters observed in the computer at an age of 3 (0) Myr and within a radius of 3.2 pc
from the cluster centre. The 5 clusters have 3000 stars in 1500 binaries initially and
the assumed IMF is the canonical one. The theoretical data nicely show a similar
spread to the observational ones; note the binary-star-induced depression of α1 in
the mass range 0.1–0.5 M�. The IMF universality hypothesis can therefore not
be discarded given the observed data. Models are from Kroupa (2001)

More exotic populations such as the Galactic bulge have also been found to
have a low-mass MF indistinguishable from the canonical form (e.g. Zoccali
et al. 2000). Thus the IMF universality hypothesis cannot be falsified
for known resolved stellar populations.

Very Ancient and/or Metal-Poor Resolved Populations

Witnesses of the early formation phase of the Milky Way are its globular clus-
ters. Such 104–106 M� clusters formed with individual star-formation rates
of 0.1–1M� yr−1 and densities of about 5 × 103–105 M� pc−3. These are rel-
atively high values, when compared with the current star-formation activity
in the Milky Way disc. For example, a 5 × 103 M� Galactic cluster forming
in 1Myr corresponds to a star-formation rate of 0.005M� yr−1. The alpha
plot, however, does not support any significant systematic difference between
the IMF of stars formed in globular clusters and present-day low-mass star-
formation. For massive stars, it can be argued that the mass in stars more
massive than 8M� cannot have been larger than about half the cluster mass,
because otherwise the globular clusters would not be as compact as they
are today. This constrains the IMF to have been close to the canonical IMF
(Kroupa 2001).
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A particularly exotic star-formation mode is thought to have occurred in
dwarf-spheroidal (dSph) satellite galaxies. The Milky Way has about 19 such
satellites at distances from 50 to 250 kpc (Metz & Kroupa 2007). These objects
have stellar masses and ages comparable to those of globular clusters, but
are 10–100 times larger and are thought to have 10–1000 times more mass in
dark matter than in stars. They also show evidence for complex star-formation
activity and metal-enrichment histories and must therefore have formed under
rather exotic conditions. Nevertheless, the MFs in two of these satellites are
found to be indistinguishable from those of globular clusters in the mass range
0.5–0.9M�. So again there is consistency with the canonical IMF (Grillmair
et al. 1998; Feltzing, Gilmore & Wyse 1999).

The work of Yasui et al. (2006) and Yasui et al. (2008) have been pushing
studies of the IMF in young star clusters to the outer, metal-poor regions
of the Galactic disc. They find the IMF to be indistinguishable, within the
uncertainties, from the canonical IMF.

The Galactic Bulge and Centre

For low-mass stars the Galactic bulge has been shown to have a MF indistin-
guishable from the canonical form (Zoccali et al. 2000). However, abundance
patterns of bulge stars suggest the IMF was top-heavy (Ballero, Kroupa &
Matteucci 2007). This may be a result of extreme star-burst conditions pre-
vailing in the formation of the bulge (Zoccali et al. 2006).

Even closer to the Galactic centre, models of the Hertzsprung–Russell
diagram of the stellar population within 1 pc of Sgr A∗ suggest the IMF was
always top-heavy there (Maness et al. 2007). Perhaps, this is the long-sought
after evidence for a variation of the IMF under very extreme conditions, in this
case a strong tidal field and higher temperatures (but note Fig. 8.10 below).

Extreme Star Bursts

As noted on p. 199, objects with a mass M ≥ 106 M� have an increased M/L
ratio. If such objects form in 1 Myr, their star-formation rates SFR≥ 1M�/yr
and they probably contain more than 104 O stars packed within a region
spanning at most a few parsecs, given their observed present-day mass–radius
relation. Such a star-formation environment is presently outside the reach
of theoretical investigation. However, it is conceivable that the higher M/L
ratios of such objects may be due to a non-canonical IMF. One possibility
is that the IMF is bottom-heavy as a result of intense photo-destruction of
accretion envelopes of intermediate to low-mass stars (Mieske & Kroupa 2008).
Another possibility is that the IMF becomes top-heavy leaving many stellar
remnants that inflate the M/L ratio (Dabringhausen & Kroupa 2008). Work
is in progress to achieve observational constraints on these two possibilities.
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Fig. 8.10. The observed mass function of the Arches cluster near the Galactic
centre by Kim et al. (2006) shown as the thin histogram is confronted with the the-
oretical MF for this object calculated with the SPH technique by Klessen, Spaans
& Jappsen (2007), marked as the hatched histogram. The latter has a down-turn
(bold steps near 100.7) incompatible with the observations. This rules out a the-
oretical understanding of the stellar mass spectrum because one counter-example
suffices to bring-down a theory. One possible reason for the theoretical failure may
be the assumed turbulence driving. For details of the figure see Kim et al. (2006)

Population III: The Primordial IMF

Most theoretical workers agree that the primordial IMF ought to be top-
heavy because the ambient temperatures were much higher and the lack of
metals did not allow gas clouds to cool and to fragment into sufficiently small
cores (Larson 1998). The existence of extremely metal-poor, low-mass stars
with chemical peculiarities is interpreted to mean that low-mass stars could
form under extremely metal-poor conditions but that their formation was
suppressed in comparison to later star-formation (Tumlinson 2007). Models
of the formation of stellar populations during cosmological structure formation
suggest that low-mass population-III stars should be found within the Galactic
halo if they formed. Their absence to-date would imply a primordial IMF
depleted in low-mass stars (Brook et al. 2007).

Thus, the last three sub-sections hint at physical environments in which
the IMF universality hypothesis may be violated.
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8.3.3 Very Low-Mass Stars (VLMSs) and Brown Dwarfs (BDs)

The origin of BDs and some VLMSs is being debated fiercely. One camp
believes these objects to form as stars, because the star-formation process
does not know where the hydrogen burning mass limit is (e.g. Eislöffel &
Steinacker 2008). The other camp believes that BDs cannot form exactly like
stars through continued accretion because the conditions required for this
to occur in molecular clouds are far too rare (e.g. Reipurth & Clarke 2001;
Goodwin & Whitworth 2007).

If BDs and VLMSs form like stars, they should follow the same pairing
rules. In particular, BDs and G dwarfs would pair in the same manner, i.e.
according to the same mathematical rules, as M dwarfs and G dwarfs. Kroupa
et al. (2003) tested this hypothesis by constructing N -body models of Taurus-
Auriga-like groups and Orion-Nebula-like clusters, finding that it leads to
far too many star–BD and BD–BD binaries with the wrong semi-major axis
distribution. Instead, star–BD binaries are very rare (Grether & Lineweaver
2006), while BD–BD binaries are rarer than stellar binaries (BDs have a 15%
binary fraction as opposed to 50% for stars) and BDs have a semi-major
axis distribution significantly narrower than that of star–star binaries. The
hypothesis of a star-like origin of BDs must therefore be discarded. BDs and
some VLMSs form a separate population, which is however linked to that of
the stars.

Thies & Kroupa (2007) re-addressed this problem with a detailed analysis
of the underlying MF of stars and BDs given observed MFs of four popu-
lations: Taurus, Trapezium, IC348 and the Pleiades. By correcting for unre-
solved binaries in all four populations and taking into account the different
pairing rules of stellar and VLMS and BD binaries, they discovered a signifi-
cant discontinuity of the MF. BDs and VLMSs therefore form a truly separate
population from that of the stars. It can be described by a single power-law
MF (8.129), which implies that about one BD forms per five stars in all four
populations.

This strong correlation between the number of stars and BDs and the
similarity of the BD MF in the four populations implies that the formation
of BDs is closely related to the formation of stars. Indeed, the truncation of
the binary binding energy distribution of BDs at a high energy suggests that
energetic processes must be operating in the production of BDs, as discussed
by Thies & Kroupa (2007). Two such possible mechanisms are embryo ejection
(Reipurth & Clarke 2001) and disc fragmentation (Goodwin & Whitworth
2007).

8.3.4 Composite Populations: The IGIMF

The vast majority of all stars form in embedded clusters and so the correct way
to proceed to calculate a galaxy-wide stellar IMF is to add up all the IMFs of
all star clusters born in one star-formation epoch. Such epochs may be iden-
tified with the Zoccali et al. (2006) star-burst events that create the Galactic
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bulge. In disc galaxies they may be related to the time-scale of transforming
the interstellar matter to star clusters along spiral arms. Addition of the clus-
ters born in one epoch gives the integrated galactic initial mass function, the
IGIMF (Kroupa & Weidner 2003).

IGIMF definition: The IGIMF is the IMF of a composite population,
which is the integral over a complete ensemble of simple stellar populations.

Note that a simple population has a mono-metallicity and a mono-age distri-
bution and is therefore a star cluster. Age and metallicity distributions emerge
for massive populations with Mcl ≥ 106 M� (e.g. ω Cen). This indicates that
such objects, which also have relaxation times comparable to or longer than
a Hubble time, are not simple (Sect. 8.1.4). A complete ensemble is a statis-
tically complete representation of the initial cluster mass function (ICMF) in
the sense that the actual mass function of Ncl clusters lies within the expected
statistical variation of the ICMF.

IGIMF conjecture: The IGIMF is steeper than the canonical IMF if the
IMF universality hypothesis holds.

Justification: Weidner & Kroupa (2006) calculate that the IGIMF is
steeper than the canonical IMF for m ≥ 1M� if the IMF universality

hypothesis holds. The steepening becomes negligible if the power-law mass
function of embedded star clusters,

ξecl(Mecl) ∝ M−β
ecl , (8.127)

is flatter than β = 1.8.
It may be argued that IGIMF = IMF (e.g. Elmegreen 2006) because,

when a star cluster is born, its stars are randomly sampled from the IMF up
to the most massive star possible. On the other hand, the physically motivated
ansatz of Weidner & Kroupa (2005, 2006) to take the mass of a cluster as the
constraint and to include the observed correlation between the maximal star
mass and the cluster mass (Fig. 8.1) yields an IGIMF which is equal to the
canonical IMF for m ≤ 1.5M� but which is systematically steeper above this
mass. By incorporating the observed maximal-cluster-mass vs star-formation
rate of galaxies, Mecl,max = Mecl,max(SFR), for the youngest clusters (Wei-
dner, Kroupa & Larsen 2004) it follows for m ≥ 1.5M� that low-surface-
brightness (LSB) galaxies ought to have very steep IGIMFs, while normal or
L∗ galaxies have Scalo-type IGIMFs, i.e. αIGIMF = αMWdisc > α2 (Sect. 8.3.1)
follows naturally. This systematic shift of αIGIMF (m ≥ 1.5M�) with galaxy
type implies that less massive galaxies have a significantly suppressed super-
nova II rate per low-mass star. They also show a slower chemical enrichment
so that the observed metallicity–galaxy-mass relation can be nicely accounted
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for (Koeppen, Weidner & Kroupa 2007). Another very important implica-
tion is that the SFR–Hα-luminosity relation for galaxies flattens so that the
SFR becomes greater by up to three orders of magnitude for dwarf galax-
ies than the value calculated from the standard (linear) Kennicutt relation
(Pflamm-Altenburg, Weidner & Kroupa 2007).

Strikingly, the IGIMF variation has now been directly measured by
Hoversten & Glazebrook (2008) using galaxies in the Sloan Digital Sky Sur-
vey. Lee et al. (2004) have indeed found LSBs to have bottom-heavy IMFs,
while Portinari, Sommer-Larsen & Tantalo (2004) and Romano et al. (2005)
find the Milky Way disc to have a an IMF steeper than Salpeter’s for massive
stars which is, in comparison with Lee et al. (2004), much flatter than the
IMF of LSBs, as required by the IGIMF conjecture.

8.3.5 Origin of the IMF: Theory vs Observations

General physical concepts such as coalescence of protostellar cores, mass-
dependent focussing of gas accretion on to protostars, stellar feedback and
fragmentation of molecular clouds lead to predictions of systematic varia-
tions of the IMF with changes of the physical conditions of star-formation
(Murray & Lin 1996; Elmegreen 2004). (But see Casuso & Beckman 2007 for
a simple cloud coagulation/dispersal model that leads to an invariant mass
distribution.) Thus, the thermal Jeans mass of a molecular cloud decreases
with temperature and increasing density. This implies that for higher metallic-
ity (stronger cooling) and density the IMF should shift on average to smaller
stellar masses (e.g. Larson 1998; Bonnell et al. 2007). The entirely different
notion that stars regulate their own masses through a balance between feed-
back and accretion also implies smaller stellar masses for higher metallicity
due, in part, to more dust and thus more efficient radiation pressure on the
gas through the dust grains. Also, a higher metallicity allows more efficient
cooling and thus a lower gas temperature, a lower sound speed and therefore
a lower accretion rate (Adams & Fatuzzo 1996; Adams & Laughlin 1996).
As discussed above, a systematic IMF variation with physical conditions has
not been detected. Thus, theoretical reasoning, even at its most elementary
level, fails to account for the observations.

A dramatic case in point has emerged recently: Klessen, Spaans & Jappsen
(2007) report state-of-the art calculations of star-formation under physical
conditions as found in molecular clouds near the Sun and they are able to
reproduce the canonical IMF. Applying the same computational technology
to the conditions near the Galactic centre, they obtain a theoretical IMF in
agreement with the previously reported apparent decline of the stellar MF in
the Arches cluster below about 6M�. Kim et al. (2006) published their obser-
vations of the Arches cluster on the astrophysics preprint archive shortly after
Klessen, Spaans & Jappsen (2007) and performed N -body calculations of the
dynamical evolution of this young cluster, revising our knowledge significantly.
In contradiction to the theoretical prediction, they find that the MF continues
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to increase down to their 50% completeness limit (1.3M�) with a power-law
exponent only slightly shallower than the canonical Massey/Salpeter value
once mass-segregation has been corrected for. This situation is demonstrated
in Fig. 8.10. It therefore emerges that there does not seem to exist any solid
theoretical understanding of the IMF.

Observations of cloud cores appear to suggest that the canonical IMF is
already frozen in at the pre-stellar cloud-core level (Motte, Andre & Neri 1998;
Motte et al. 2001). Nutter & Ward-Thompson (2007) and Alves, Lombardi
& Lada (2007) find, however, the pre-stellar cloud cores are distributed ac-
cording to the same shape as the canonical IMF but shifted to larger masses
by a factor of about three or more. This is taken to perhaps mean a star-
formation efficiency per star of 30% or less independently of stellar mass. The
interpretation of such observations in view of multiple star-formation in each
cloud-core is being studied by Goodwin et al. (2008), while Krumholz (2008)
outlines current theoretical understanding of how massive stars form out of
massive pre-stellar cores.

8.3.6 Conclusions: IMF

The IMF universality hypothesis, the cluster IMF conjecture and
the IGIMF conjecture have been stated. In addition, we may make the
following assertions.

1. The stellar luminosity function has a pronounced maximum at MV ≈ 12,
MI ≈ 9, which is universal and well understood as a result of stellar
physics. Thus by counting stars in the sky we can look into their interiors.

2. Unresolved multiple systems must be accounted for when the MFs of
different stellar populations are compared.

3. BDs and some VLMSs form a separate population that correlates with
the stellar content. There is a discontinuity in the MF near the star/BD
mass transition.

4. The canonical IMF (8.124) fits the star counts in the solar neighbourhood
and all resolved stellar populations available to-date. Recent data at the
Galactic centre suggest a top-heavy IMF, perhaps hinting at a possible
variation with conditions (tidal shear, temperature).

5. Simple stellar populations are found in individual star clusters with Mcl

≤ 106 M�. These have the canonical IMF.
6. Composite populations describe entire galaxies. They are a result of many

epochs of star-cluster formation and are described by the IGIMF Con-

jecture.
7. The IGIMF above about 1M� is steep for LSB galaxies and flattens to the

Scalo slope (αIGIMF ≈ 2.7) for L∗ disc galaxies. This is nicely consistent
with the IMF universality hypothesis in the context of the IGIMF

conjecture.
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8. Therefore, the IMF universality hypothesis cannot be excluded de-
spite the cluster IMF conjecture for conditions ρ ≤ 105 stars pc−3,
Z ≥ 0.002 and non-extreme tidal fields.

9. Modern star-formation computations and elementary theory give wrong
results concerning the variation and shape of the stellar IMF, as well as
the stellar multiplicity (Goodwin & Kroupa 2005).

10. The stellar IMF appears to be frozen-in at the pre-stellar cloud-core stage.
So it is probably a result of the processes that lead to the formation of
self-gravitating molecular clouds.

8.3.7 Discretisation

As discussed above, a theoretically motivated form of the IMF that passes
observational tests does not exist. Star-formation theory gets the rough shape
of the IMF right. There are fewer massive stars than low-mass stars. How-
ever, other than this, it fails to make any reliable predictions whatsoever as
to how the IMF should look in detail under different physical conditions. In
particular, the overall change of the IMF with metallicity, density or temper-
ature predicted by theory is not evident. An empirical multi-power-law form
description of the IMF is therefore perfectly adequate and has important ad-
vantages over other formulations. A general formulation of the stellar IMF in
terms of multiple power-law segments is

ξ(m) = k

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
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, (8.128)

where mmax ≤ mmax∗ ≈ 150M� depends on the stellar mass of the embedded
cluster (Fig. 8.1). The empirically determined stellar IMF is a two-part-form
(8.124), with a third power-law for BDs, whereby BDs and VLMSs form a
separate population from that of the stars (p. 232),

ξBD ∝ m−α0 , α0 ≈ 0.3, (8.129)

(Mart́ın et al. 2000; Chabrier 2003; Moraux, Bouvier & Clarke 2004) and

ξBD(0.075M�) ≈ 0.25 ± 0.05 ξ(0.075M�),

(Thies & Kroupa 2007) where ξ is the canonical stellar IMF (8.124). This
implies that about one BD forms per five stars.

One advantage of the power-law formulation is that analytical generat-
ing functions and other quantities can be readily derived. Another important
advantage is that with a multi-power-law form, different parts of the IMF
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can be varied in numerical experiments without affecting the other parts. A
practical numerical formulation of the IMF is prescribed in Pflamm-Altenburg
& Kroupa (2006). Thus, for example, the canonical two-part power-law IMF
can be changed by adding a third power-law above 1M� and making the IMF
top-heavy (αm>1 M� < α2), without affecting the shape of the late-type stel-
lar luminosity function as evident in Fig. 8.8. The KTG93 (Kroupa, Tout &
Gilmore 1993) IMF is such a three-part power-law form relevant to the overall
young population in the Milky Way disc. This is top-light (αm>1 M� > α2,
Kroupa & Weidner 2003).

A log-normal formulation does not offer these advantages and requires
power-law tails above about 1M� and for brown dwarfs, for consistency with
the observations discussed above. However, while not as mathematically con-
venient, the popular Chabrier log-normal plus power-law IMF (Table 1 of
Chabrier 2003) formulation leads to an indistinguishable stellar mass distri-
bution to the two-part power-law IMF (Fig. 8.11). Various analytical forms
for the IMF are compiled in Table 3 of Kroupa (2007a).

A generating function for the two-part power-law form of the canonical
IMF (8.124) can be written down by following the steps taken in Sect. 8.2.3.
The corresponding probability density is

p1 = kp,1 m
−α1 , 0.08 ≤ m ≤ 0.5M� (8.130)p2 = kp,2 m
−α2 , 0.5 < m ≤ mmax,

where kp,i are normalisation constants ensuring continuity at 0.5M� and
∫ 0.5

0.08

p1 dm+
∫ mmax

0.5

p2 dm = 1, (8.131)

N

M

Fig. 8.11. Comparison between the popular Chabrier IMF (log-normal plus power-
law extension above 1 M�, dashed curve, Table 1 in Chabrier 2003) with the canon-
ical two-part power-law IMF (solid line, (8.124)). The figure is from Dabringhausen,
Hilker & Kroupa (2008)



238 P. Kroupa

whereby mmax follows from Fig. 8.1. Defining

X ′
1 =

∫ 0.5

0.08

p1(m) dm, (8.132)

it follows that

X1(m) =
∫ m

0.08

p1(m) dm, if m ≤ 0.5M�, (8.133)

or
X2(m) = X ′

1 +
∫ m

0.5

p2(m) dm, if m > 0.5M�. (8.134)

The generating function for stellar masses follows from inversion of the above
two equations Xi(m). The procedure is then to choose a random variate X ∈
[0, 1] and to select the generating function m(X1 = X) if 0 ≤ X ≤ X1, or
m(X2 = X) if X1 < X ≤ 1.

This algorithm is readily generalised to any number of power-law segments
(8.128), such as including a third segment for brown dwarfs and allowing the
IMF to be discontinuous near 0.08M� (Thies & Kroupa 2007). Such a form
has been incorporated into the Nbody4/6/7 programmes, but hitherto with-
out the discontinuity. However, Jan Pflamm-Altenburg has developed a more
powerful and general method of generating stellar masses (or any other quan-
tities) given an arbitrary distribution function (Pflamm-Altenburg & Kroupa
2006).11

8.4 The Initial Binary Population

It has already been demonstrated that corrections for unresolved multiple
stars are of much importance to derive correctly the shape of the stellar MF
given an observed LF (Fig. 8.8). Binary stars are also of significant importance
for the dynamics of star clusters because a binary has intrinsic dynamical
degrees of freedom that a single star does not possess. A binary can therefore
exchange energy and angular momentum with the cluster. Indeed, binaries
are very significant energy sources, as for example, a binary composed of two
1M� main-sequence stars and with a semi-major axis of 0.1AU has a binding
energy comparable to that of a 1000M� cluster of size 1 pc. Such a binary
can interact with cluster-field star accelerating them to higher velocities and
thereby heating the cluster.

The dynamical properties describing a multiple system are

• the period P (in days throughout this text) or semi-major axis a (in AU),
• the system mass msys = m1 +m2,

11The C-language software package, libimf, can be downloaded from the website
http://www.astro.uni-bonn.de/~webaiub/english/downloads.php.

http://www.astro.uni-bonn.de/~webaiub/english/downloads.php
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• the mass ratio q ≡ m2
m1

≤ 1, where m1,m2 are, respectively, the primary
and secondary-star masses and

• the eccentricity e = (rapo − rperi)/(rapo + rperi), where rapo, rperi are, re-
spectively, the apocentric and pericentric distances.

Given a snapshot of a binary, the above quantities can be computed from
the relative position, rrel and velocity, vrel, vectors and the masses of the two
companion stars by first calculating the binding energy,

Eb =
1
2
μ v2

rel −
Gm1 m2

rrel
= −Gm1 m2

2 a
⇒ a, (8.135)

where μ = m1 m2 /(m1 + m2) is the reduced mass. From Kepler’s third law
we have

msys =
a3

AU

P 2
yr

⇒ P = Pyr × 365.25 days, (8.136)

where Pyr is the period in years and aAU is in AU. Finally, the instantaneous
eccentricity can be calculated using

e =

[
(
1 − rrel

a

)2

+
(rrel · vrel)

2

aGmsys

] 1
2

, (8.137)

which can be derived from the orbital angular momentum too,

L = μvrel × rrel, (8.138)

with

L =
[

G

msys
a (1 − e2)

] 1
2

m1 m2. (8.139)

The relative equation of motion is

d2rrel

dt2
= −Gmsys

r3rel
rrel + apert(t), (8.140)

where apert(t) is the time-dependent perturbation from other cluster members.
It follows that the orbital elements of a binary in a cluster are functions of
time, P = P (t) and e = e(t). Also, q = q(t) during strong encounters when
partners are exchanged. Because most stars form in embedded clusters, the
binary-star properties of a given population cannot be taken to represent the
initial or primordial values.

The following conjecture can be proposed.

Dynamical population synthesis conjecture: if initial binary popu-
lations are invariant, a dynamical birth configuration of a stellar population
can be inferred from its observed binary population. This birth configura-
tion is not unique, however, but defines a class of dynamically equivalent
solutions.
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The proof is simple. Set up initially identical binary populations in clusters
with different radii and masses and calculate the dynamical evolution with an
N -body programme. For a given snapshot of a population, there is a scalable
starting configuration in terms of size and mass (Kroupa 1995c,d).

Binaries can absorb energy and thus cool a cluster. They can also heat
a cluster. There are two extreme regimes that can be understood with a
Gedanken experiment. Define

Ebin ≡ −Eb > 0,
(8.141)Ek ≡ (1/2)mσ2 ≈ (1/N) × kinetic energy of cluster.

Soft binaries have Ebin � Ek, while hard binaries have Ebin � Ek. A useful
equation in this context is the relation between the orbital period and circular
velocity of the reduced particle,

log10 P [days] = 6.986 + log10 msys[M�] − 3 log10 vorb[km s−1]. (8.142)

Consider now the case of a soft binary, a reduced-mass particle with
vorb � σ. By the principle of energy equipartition, vorb → σ (8.5) as time
progresses. This implies a ↑, P ↑. A hard binary has vorb � σ. Invoking en-
ergy equipartition, we see that vorb ↓, a ↓, P ↓. Furthermore, the amount of
energy needed to ionise a soft binary is negligible compared to the amount
of energy required to ionise a hard binary. And the cross section for suffering
an encounter scales with the semi-major axis. This implies that a soft binary
becomes ever more likely to suffer an additional encounter as its semi-major
axis increases. Therefore, it is much more probable for soft binaries to be dis-
rupted rapidly, than for hard binaries to do so. Thus follows (Heggie 1975;
Hills 1975) a law.

Heggie–Hills law: soft binaries soften and cool a cluster while hard bi-
naries harden and heat a cluster.

Numerical scattering experiments by Hills (1975) have shown that harden-
ing of binaries often involves partner exchanges. Heggie (1975) derived the
above law analytically. Binaries in the energy range 10−2 Ek ≤ Ebin ≤ 102 Ek,
33−1 σ ≤ vorb ≤ 33σ cannot be treated analytically owing to the complex
resonances that are created between the binary and the incoming star or bi-
nary. It is these binaries that may be important for the early cluster evolution,
depending on its velocity dispersion, σ = σ(Mecl). Cooling of a cluster is en-
ergetically not significant but has been seen for the first time by Kroupa, Petr
& McCaughrean (1999).

Figure 8.12 shows the broad evolution of the initial period distribution
in a star cluster. At any time, binaries near the hard/soft boundary, with
energies Ebin ≈ Ek and periods P ≈ Pth (vorb = σ) (8.5), the thermal period,
are most active in the energy exchange between the cluster field and the
binary population. The cluster expands as a result of binary heating and
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Fig. 8.12. Illustration of the evolution of the distribution of binary star periods in
a cluster (lP = log10 P ). A binary has orbital period Pth when σ3D (= σ) equals its
circular orbital velocity (8.142). The initial or birth distribution (8.164) evolves to
the form seen at time t > tt

mass segregation and the hard/soft boundary, Pth, shifts to longer periods.
Meanwhile, binaries with P > Pth continue to be disrupted while Pth keeps
shifting to longer periods. This process ends when

Pth ≥ Pcut, (8.143)

which is the cutoff or maximum period in the surviving period distribution.
At this critical time, tt, further cluster expansion is slowed because the popu-
lation of heating sources, the binaries with P ≈ Pth, is significantly reduced.
The details strongly depend on the initial value of Pth, which determines
the amount of binding energy in soft binaries which can cool the cluster if
significant enough.

After the critical time, tt, the expanded cluster reaches a temporary state
of thermal equilibrium with the remaining binary population. Further evolu-
tion of the binary population occurs with a significantly reduced rate deter-
mined by the velocity dispersion in the cluster, the cross section given by the
semi-major axis of the binaries and their number density and that of single
stars in the cluster. The evolution of the binary star population during this
slow phase usually involves partner exchanges and unstable but also long-
lived hierarchical systems. The IMF is critically important for this stage, as
the initial number of massive stars determines the cluster density at t ≥ 5Myr
owing to mass loss from evolving stars. Further binary depletion occurs once
the cluster goes into core-collapse and the kinetic energy in the core rises.
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8.4.1 Frequency of Binaries and Higher-Order Multiples

The emphasis here is on late-type binary stars because higher-order multiples
are rare as observed. The information on the multiplicity of massive stars is
very limited (Goodwin et al. 2007). We define, respectively, the number of
single stars, binaries, triples, quadruples, etc., by the numbers

(Nsing : Nbin : Ntrip : Nquad : . . .) = (S : B : T : Q : . . .) (8.144)

and the multiplicity fraction by

fmult =
Nmult

Nsys
=

B + T + Q + . . .

S + B + T + Q + . . .
(8.145)

and the binary fraction is

fbin =
B

Nsys
. (8.146)

In the Galactic field, Duquennoy & Mayor (1991) derive from a decade-
long survey for G-dwarf primary stars, GNmult = (57:38:4:1) and for M-dwarfs
Fischer & Marcy (1992) find MNmult = (58:33:7:1). Thus,

Gfmult = 0.43; Gfbin = 0.38 (8.147)
Mfmult = 0.41; Mfbin = 0.33. (8.148)

It follows that most stars are indeed binary.
After correcting for incompleteness,

Gfbin = 0.53 ± 0.08, (8.149)

Kfbin = 0.45 ± 0.07, (8.150)
Mfbin = 0.42 ± 0.09, (8.151)

where the K-dwarf data have been published by Mayor et al. (1992). It follows
that

Gfbin ≈K fbin ≈M fbin ≈ 0.5 ≈ ftot (8.152)

in the Galactic field, perhaps with a slight decrease towards lower masses. In
contrast, for brown dwarfs, BDfbin ≈ 0.15 � starsfbin (Thies & Kroupa 2007
and references therein).

An interesting problem arises because 1Myr old stars have fTTauri ≈ 1
(e.g. Duchêne 1999). Given the above information, the following conjecture
can be stated:

Binary-star conjecture: nearly all stars form in binary systems.

Justification: if a substantial fraction of stars were to form in higher-order
multiple systems, or as small-N systems, the typical properties of these at
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birth imply their decay within typically 104 to 105 yr, leaving a predomi-
nantly single-stellar population. However, the majority of 106 yr old stars are
observed to be in binary systems (Goodwin & Kroupa 2005).

Higher-order multiple systems do exist and can only be hierarchical to
guarantee stability. Such systems are multiple stars, which are stable over
many orbital times and are usually tight binaries orbited by an outer tertiary
companion, or two tight binaries in orbit about each other. Stability issues are
discussed in detail in Chap. 3, based on a theoretical development from first
principles. In particular, a new stability criterion for the general three-body
problem is derived in terms of all the orbital parameters. For comparable
masses, long-term stability is typically ensured for a ratio of the outer peri-
centre to the inner semi-major axis of about 4. If the stability condition is not
fulfilled, higher-order multiple systems usually decay on a time-scale relating
to the orbital parameters. Star cluster remnants (or dead star clusters) may
be the origin of most hierarchical, higher-order multiple stellar systems in the
field (p. 199).

8.4.2 The Initial Binary Population – Late-Type Stars

The initial binary population is described by distribution functions that are as
fundamental for a stellar population as the IMF. There are four distribution
functions that define the initial dynamical state of a population,

1. the IMF, ξ(m),
2. the distribution of periods (or semi-major axis), df = fP (logP ) d logP ,
3. the distribution of mass-ratios, df = fq(q) dq and
4. the distribution of eccentricities, df = fe(e) de,

where df is the fraction of systems between f and f +df . Thus, for example,
Gflog P (log10 P = 4.5) = 0.11, i.e. of all G-dwarfs in the sky, 11% have a
companion with a period in the range 4–5 d (Fig. 8.16).

These distribution functions have been measured for late-type stars in the
Galactic field and in star-forming regions (Fig. 8.13). According to Duquennoy
& Mayor (1991) and Fischer & Marcy (1992), both G-dwarf and M-dwarf
binary systems in the Galactic field have period distribution functions that
are well described by log-normal functions,

fP (log10 P ) = ftot

(
1

σlog10 P

√
2π

)

e

[

− 1
2

(log10 P−log10 P )2

σ2
log10 P

]

, (8.153)

with log10 P ≈ 4.8 and σlog10 P ≈ 2.3 and
∫
all P

flog10 P (log10 P ) d log10 P =
ftot ≈ 0.5. K-dwarfs appear to have an indistinguishable period distribution.

From Fig. 8.13 it follows that the pre-mainsequence binary fraction is
larger than that of main-sequence stars (see also Duchêne 1999). Is this an
evolutionary effect?
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f
P

P

Fig. 8.13. Measured period-distribution functions for G-dwarfs in the Galactic
field (histogram, Duquennoy & Mayor 1991), K-dwarfs (open circles, Mayor et al.
1992) and M-dwarfs (asterisks, Fischer & Marcy 1992). About 1-Myr-old T Tauri
binary data (open squares, partially from the Taurus–Auriga stellar groups) are a
compilation from various sources (see Fig. 10 in Kroupa, Aarseth & Hurley 2001).
In all cases, the area under the distribution is ftot

Further, Duquennoy & Mayor (1991) derived the mass-ratio and eccen-
tricity distributions for G-dwarfs in the Galactic field. The mass-ratio dis-
tribution of G-dwarf primaries is not consistent with random sampling from
the canonical IMF (8.124), as the number of observed low-mass companions
is underrepresented (Kroupa 1995c). In contrast, the pre-mainsequence mass-
ratio distribution is consistent, within the uncertainties, with random sam-
pling from the canonical IMF for q ≥ 0.2 (Woitas, Leinert & Koehler 2001).
The eccentricity distribution of Galactic-field G-dwarfs is found to be ther-
mal for log10 P ≥ 3, while it is bell shaped with a maximum near e = 0.25
for log10 P ≤ 3. Not much is known about the eccentricity distribution of
pre-mainsequence binaries, but numerical experiments show that fe does not
evolve much in dense clusters, i.e. the thermal distribution must be initial
(Kroupa 1995d).

The thermal eccentricity distribution,

fe(e) = 2 e, (8.154)

follows from a uniform binding-energy distribution (all energies are equally
populated) as follows. The orbital angular momentum of a binary is

L2 =
G

msys

Gm1 m2

2Ebin

(
1 − e2

)
(m1 m2)

2
, (8.155)

from which follows
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e =
(

1 − 2Ebin L
2 msys

G2 (m1 m2)2

) 1
2

. (8.156)

Differentiation leads to

de
dEbin

=
[

−L2 msys

G2 (m1 m2)2

]

e−1 ∝ e−1. (8.157)

The number of binaries with eccentricities in the range e, e + de is the same
number of binaries with binding energy in the range Ebin, Ebin + dEbin (the
same sample of binaries),

f(e) de = f(Ebin) dEbin ∝ f(Ebin) ede. (8.158)

But ∫ 1

0

f(e) de = 1. (8.159)

That is,

f(Ebin)
∫ 1

0

ede ∝ f(Ebin)
1
2
e2|10 = const. (8.160)

So
f(Ebin) = const ⇒ f(e) de = 2 ede. (8.161)

Thus, f(e) = 2 e is a thermalized distribution. All energies are equally oc-
cupied so f(Ebin) = const. N -body experiments have demonstrated that the
period distribution function must span the observed range of periods at birth,
because dynamical encounters in dense clusters cannot widen an initially nar-
row distribution (Kroupa & Burkert 2001). There are thus three discrepancies
between main-sequence and pre-mainsequence late-type stellar binaries,

1. the binary fraction is higher for the latter,
2. the period distribution function is different and
3. the mass-ratio distribution is consistent with random paring for the latter,

while it is deficient in low-mass companions in the former, for G-dwarf
primaries.

Can these be unified? That is, are there unique initial flog P , fq and fe con-
sistent with the pre-mainsequence data that can be evolved to the observed
main-sequence distributions?

This question can be solved by framing the following ansatz. Assume the
orbital-parameter distribution function for binaries with primaries of mass m1

can be separated,
D(logP, e, q : m1) = flog P fe fq. (8.162)

The stellar-dynamical operator, ΩN,rh , can now be introduced so that the
initial distribution function is transformed to the final (Galactic-field) one,

Dfin(logP, e, q : m1) = ΩN,rh [Din(logP, e, q : m1)] . (8.163)
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This operator provides a dynamical environment equivalent to that of a star
cluster with N stars and a half-mass radius rh (see also the Dynamical Pop-
ulation Synthesis Conjecture, p. 239). Kroupa (1995c) and Kroupa (1995d)
indeed show this to be the case for a cluster with N = 200 binaries and
rh = 0.77 pc and derive the initial distribution function, Din, for late-type
binary systems that fulfils the above requirement and also has a simple gener-
ating function (see below). It is noteworthy that such a cluster is very similar
to the typical cluster from which most field stars probably originate. The full
solution for Ω, so that the Galactic field is reproduced from forming and dis-
solving star clusters, requires full-scale inverse dynamical population synthesis
for the Galactic field.

Thus, by the dynamical population synthesis conjecture (p. 239),
the above ansatz with ΩN,rh leads to one solution of the inverse dynamical
population synthesis problem (the 200 binary, rh = 0.8 pc cluster, Fig. 8.14 i.e.
most stars in the Galactic field stem from clusters dynamically similar to this
one), provided the birth (or primordial) distribution functions for logP, e, q
are

flog P,birth = η
logP − logPmin

δ + (logP − logPmin)2
. (8.164)

This distribution function has a generating function (Sect. 8.2.3)

logP (X) =
[
δ
(
e

2 X
η − 1

)] 1
2

+ logPmin. (8.165)

The solution obtained by Kroupa (1995d) has

η = 2.5, δ = 45, logPmin = 1, (8.166)

so that logPmax = 8.43 since
∫ log Pmax

log Pmin
flog P d logP = ftot = 1 is a require-

ment for stars at birth. Intriguingly, similar distributions can be arrived at
semi-empirically if we assume isolated formation of binary stars in a turbulent
molecular cloud (Fisher 2004).

The birth-eccentricity distribution is thermal (8.154) while the birth mass-
ratio distribution is generated from random pairing from the canonical IMF.
However, in order to reproduce (1) the observed data in the eccentricity–
period diagram, (2) the observed eccentricity distribution and (3) the observed
mass-ratio distribution for short-period (logP ≤ 3) systems, a correlation of
the parameters needs to be introduced through eigenevolution. Eigenevolu-
tion is the sum of all dissipative physical processes that transfer mass, energy
and angular momentum between the companions when they are still very
young and accreting.

A formulation that is quite successful in reproducing the overall observed
correlations between logP, e, q for short-period systems has been derived from
tidal circularisation theory (Kroupa 1995d). The most effective orbital dissi-
pation occurs when the binary is at periastron,
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Fig. 8.14. Evolution of ftot, the total binary fraction for stellar mass 0.1 ≤
mi/M� ≤ 1.1, i = 1, 2 with time for the four star-cluster models initially with
N = 200 binaries computed by Kroupa (1995c) in the search for the existence of an
Ωrh,N . The initial half-mass radius of the clusters is denoted in this text as rh. Note
that the rh = 0.8 pc cluster yields the correct ftot ≈ 0.5 for the Galactic field. The
period-distribution function and the mass-ratio distribution function that emerge
from this cluster also fit the observed Galactic-field distribution. Some binary stars
form by three-body encounters in clusters that initially consist only of single stars
and the proportion of such binaries is shown for the single-star clusters (with ini-
tially N = 400 stars). Such dynamically formed binaries are very rare and so ftot

remains negligible

rperi = (1 − e)P
2
3
yr (m1 +m2)

1
3 , (8.167)

where Pyr = P/365.25 is the period in years. Let the binary be born with
eccentricity ebirth, then the system evolves approximately, according to (Gold-
man & Mazeh 1994), as

1
e

de
dt

= −ρ′ ⇒ log10ein = −ρ+ log10ebirth, (8.168)

where 1/ρ′ is the tidal circularisation time-scale, ein is the initial eccentricity
and

ρ =
∫ Δt

0

ρ′ dt =
(
λR�
rperi

)χ

, (8.169)

where R� is the Solar radius in AU, λ, χ are tidal circularisation parame-
ters and rperi (in AU) is assumed to be constant because the dissipational
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force only acts tangentially at periastron. Note that a large λ implies that
tidal dissipation is effective for large separations of the companions (e.g. they
are puffed-up pre-mainsequence structures) and a small χ implies the dissi-
pation is soft, i.e. weakly varying with the separation of the companions. In
this integral, Δt ≤ 105 yr is the time-scale within which pre-mainsequence
eigenevolution completes. The initial period becomes, from (8.167),

Pin = Pbirth

(
mtot,birth

mtot,in

) 1
2
(

1 − ebirth

1 − ein

) 3
2

. (8.170)

Kroupa (1995d) assumed the companions merge if ain ≤ 10R� in which case
m1 +m2 → m.

In order to reproduce the observed mass-ratio distribution, given random
pairing at birth and to also reproduce the fact that short-period binaries tend
to have similar-mass companions, Kroupa (1995d) implemented a feeding al-
gorithm, according to which the secondary star accretes high angular momen-
tum gas from the circumbinary accretion disc or material, so that its mass
increases while the primary mass remains constant. Thus, after generating the
two birth masses randomly from the canonical IMF, the initial mass-ratio is

qin = qbirth + (1 − qbirth) ρ∗, (8.171)

where

ρ∗ =
{
ρ : ρ ≤ 1,
1 : ρ > 1. (8.172)

The above is a very simple algorithm which nevertheless reproduces the
essence of orbital dissipation so that the correlations between the orbital pa-
rameters for short-period systems are well accounted for. The best parameters
for the evolution

birth → initial : λ = 28 , χ = 0.75. (8.173)

Figure 8.15 shows an example of the overall model in terms of the
eccentricity–period diagram. Figures 8.16 and 8.17 demonstrate that it nicely
accounts for the period and mass-ratio distribution data, respectively.

Note that initial distributions are derived from birth distributions. This
is to be understood in terms of these initial distributions being the initiali-
sation of N -body experiments, while the birth distributions are more related
to the theoretical distribution of orbital parameters before dissipational and
accretion processes have had a major effect on them. The birth distributions
are, however, mostly an algorithmic concept. Once the N -body integration
is finished, e.g. when the cluster is dissolved, the remaining binaries can be
evolved to the main-sequence distributions by applying the same eigenevolu-
tion algorithm above, but with parameters

after Nbody integration → mainsequence : λms = 24.7 , χms = 8. (8.174)
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Fig. 8.15. Eccentricity–period after pre-mainsequence eigenevolution (λ = 28, χ =
0.75) at t = 0 (upper panel) for masses 0.1 ≤ mi/M� ≤ 1.1 and after cluster dis-
integration (bottom panel; note: Tage means days). Systems with semi-major axes,
a ≤ 10 R� have been merged. Binaries are only observed to have e, log P below the
envelope described by Duquennoy & Mayor (1991). The region above is forbidden
because pre-mainsequence dissipation depopulates it within 105 yr. However, dy-
namical encounters can repopulate the eigenevolution region so that systems with
forbidden parameters can be found but are short-lived. Some of these are indicated
as open circles. Eigenevolution (tidal circularisation) on the main sequence with
λms = 24.7 and χms = 8, applied to the data in the lower panel, depopulates the
eigenevolution region and circularises all orbits with periods less than about 12 d.
The dashed lines are constant periastron distances (8.167) for rperi = λ R� and
msys = 2.2, 0.64 and 0.2 M� (in increasing thickness). Horizontal and vertical cuts
through this diagram produce eccentricity and period distribution functions, and
mass-ratio distributions that fit the observations (Kroupa 1995d)
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t

t

Fig. 8.16. The period distribution functions (IPF: (8.164) with (8.166) and for
stellar masses 0.1 ≤ mi/M� ≤ 1.1). The dashed histogram is derived from IPF with
the eigenevolution and feeding algorithms and represents the binary population at an
age of about 105 yr. The solid histogram follows from the dashed one after evolving a
cluster with initially N = 200 binaries and rh = 0.8 pc. The agreement of the dashed
histogram with the observational pre-mainsequence data (as in Fig. 8.13) and of the
solid histogram with the observed main sequence (Galactic field) data (also as in
Fig. 8.13) is good. A full model of the Galactic field late-type binary population has
been arrived at which unifies all available, but apparently discordant, observational
data (see also Figs. 8.14, 8.15, and 8.17), nothing that the longest-period TTauri
binary population is expected to show some disruption

The need for λms < λ and χms > χ to ensure, for example, the tidal circular-
isation period of 12 days for G dwarfs (Duquennoy & Mayor 1991) is nicely
qualitatively consistent with the shrinking of pre-mainsequence stars and the
emergence of radiative cores that essentially reduce the coupling between the
stellar surface, where the dissipational forces are most effective, and the cen-
tre of the star. The reader is also directed to Mardling & Aarseth (2001) who
introduce a model of tidal circularisation to the N -body code. Finally, the
above work and the application to the ONC and Pleiades (Kroupa, Aarseth
& Hurley 2001) suggests the following hypothesis:

Initial binary universality hypothesis: the initial period (8.166), ec-
centricity (8.154) and mass-ratio (random pairing from canonical IMF)
distributions constitute the parent distribution of all late-type stellar
populations.

Can this hypothesis be rejected?
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Fig. 8.17. The mass-ratio distribution for stars with 0.1 ≤ m/M� ≤ 1.1 is the
solid histogram, whereas the initial mass-ratio distribution (random pairing from
the canonical IMF, after eigenevolution and feeding, at an age of about 105 yr) is
shown as the dashed histogram. The solid histogram follows from the dashed one
after evolving a cluster with initially N = 200 binaries and rh = 0.8 pc. The obser-
vational data (solid dots, Reid & Gizis 1997) have been obtained after removing WD
companions and scaling to the model. This solar neighbourhood 8 pc sample is not
complete and may be biased towards q = 1 systems (Henry et al. 1997). Neverthe-
less, the agreement between model (solid histogram) and the data is striking. A full
model of the Galactic field binary population has been arrived at which unifies all
available, but apparently discordant, observational data (see also Figs. 8.14, 8.15,
8.16)

8.4.3 The Initial Binary Population – Massive Stars

The above semi-empirical distribution functions have been formulated for late-
type stars (primary mass m1 ≤ 1M�). It is for these that we have the best
observations. It is not clear yet if they are also applicable to massive binaries.

An approach taken by Clarke & Pringle (1992) is to constrain the binary
properties of OB stars by assuming that runaway OB stars are ejected from
star-forming regions. About 10–25% of all O stars are runaway stars, while
about 2% of B stars are runaways. This approach leads to the result that
massive stars must form in small-N groups of binaries that are biased to-
wards unit mass ratio. This is a potentially powerful approach but it can only
constrain the properties of OB binaries when they are ejected. This occurs
after many dynamical encounters in the cluster core, which typically lead to
the mass-ratio evolving towards unity as the binaries harden. The true birth
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properties of massive binaries therefore remain obscure and we need to resort
to N -body experiments to test various hypotheses given the observations. One
such hypothesis could be, for example, to assume massive stars form in bina-
ries with birth pairing properties as for low-mass stars (Sect. 8.4.2), i.e. most
massive primaries would have a low-mass companion and to investigate if this
hypothesis leads to the observed number of runaway massive stars through
dynamical mass segregation to the cluster core and partner exchanges through
dynamical encounters there between the massive stars.

Apart from the fraction of runaway stars, direct surveys have lead to some
insights into the binary properties of the observed massive stars. Thus, for
example, Baines et al. (2006) report a very high (f ≈ 0.7 ± 0.1) binary frac-
tion among Herbig Ae/Be stars with a binary fraction that increases with
increasing primary mass. Furthermore, they find that the circumbinary discs
and the binary orbits appear to be coplanar. This supports a fragmentation
origin rather than collisions or capture as the origin of massive binaries. Most
O stars are believed to exist as short-period binaries with q ≈ 1 (Garćıa &
Mermilliod 2001), at least in rich clusters. On the other hand, small-q appear
to be favoured in smaller clusters such as the ONC, consistent with random
pairing (Preibisch et al. 1999). Kouwenhoven et al. (2005) report that the A
and late-type B binaries in the Scorpius OB2 association have a mass-ratio
distribution inconsistent with random pairing. The lower limit on the binary
fraction is 0.52, while Kouwenhoven et al. (2007) update this to a binary frac-
tion of 72%. They also find that the semi-major axis distribution contains
too many close pairs compared to a Duquennoy & Mayor (1991) log-normal
distribution. These are important constraints but, again, they are derived for
binaries in an OB association, which is an expanded version of a dense star
cluster (Sect. 8.1.2) and therefore hosts a dynamically evolved population.

Given the above results, perhaps the massive binaries in the ONC repre-
sent the primordial population, whereas in rich clusters and in OB associa-
tions the population has already evolved dynamically through hardening and
companion exchanges (fq rising towards q = 1). This possibility needs to be
investigated with high-precision N -body computations of young star clusters.
The first simplest hypothesis to test would be to extend the pairing rules of
Sect. 8.4.2 to all stellar masses, perform many (because of the small number of
massive stars) N -body renditions of the same basic pre-gas expulsion cluster
and to quantify the properties of the emerging stellar population at various
dynamical times (Kroupa 2001).

Another approach would be to constrain a and m2 for a given m1 ≥ 5M�
so that

Ebin ≈ Ek (8.175)

(8.141). Or we can test the initial massive-star population given by

a <
rc

N
1
3
OB

, (8.176)
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which follows from stating that the density of a massive binary, 2×3/(a3 4π),
be larger than the cluster-core density, NOB 3/(r3c 4π). So far, none of these
possibilities have been tested, apart from the Initial Binary Universality

Hypothesis (p. 250) extension to massive stars (Kroupa 2001).

8.5 Summary

The above material gives an outline of how to set up an initial, birth or
primordial stellar population so that it resembles observed stellar populations.
In Sect. 8.4.2 a subtle differentiation was made between initial and birth
populations, in the sense that an initial population is derived from a birth
population through processes that act too rapidly to be treated by an N -
body integration.

An N -body stellar system is generated for numerical experiments by speci-
fying its 3D structure and velocity field (Sect. 8.2), the mass distribution of its
population (Sect. 8.3) and the properties of its binary population (Sect. 8.4).
Given the distribution functions discussed here and the existing numerical
results based on these, it is surprising how universal the stellar and binary
population turns out to be at birth. A dependence of the IMF or the birth
binary properties on the physical properties of star-forming clouds cannot be
detected conclusively. In fact, the theoretical proposition that there should be
a dependency can be rejected, except possibly (i) in the extreme tidal field
environment at the Galactic centre, or (ii) in the extreme protostellar den-
sity environment of ultra-compact dwarf galaxies, or (iii) for extreme physical
environments (pp. 230–231).

The unified picture that has emerged concerning the origin of stellar pop-
ulations is that stars form according to a universal IMF and mostly in binary
systems. They form in very dense clusters, which expel their residual gas and
rapidly evolve to T- or OB-associations. If the latter are massive enough,
the dense embedded clusters evolve to populous OB associations that may
be expanding rapidly and contain cluster remnants, which may reach glob-
ular cluster masses and beyond, in intense star-bursts. This unified picture
explains naturally the high infant weight loss and infant mortality of clusters,
the binary properties of field stars, possibly thick discs of galaxies and the
existence of population II stellar halos around galaxies that have old globular
cluster systems.

Many open questions remain. Why is the star-formation product so univer-
sal within current constraints? How are massive stars distributed in binaries?
Do they form at the centres of their clusters? Why is the cluster mass of
about 106 M� special? And which star cluster population is a full solution
to the inverse dynamical population synthesis problem? (p. 246). Many more
observations are required. These must not only be of topical high red-shift
star-burst systems but also of the more mundane low red-shift, and prefer-
ably local, star-forming objects, globular and open star clusters.
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dreas Küpper for producing the Plummer vs King model comparisons and for
carefully reading the whole text, and to Joerg Dabringhausen, who supplied
figures from his work.

References

Aarseth S. J. 2003, Gravitational N-Body Simulations. Cambridge Univ. Press, Cam-
bridge 202
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The bodies in any N -body system can change. The most changeable bodies
are stars. In order to fully model the evolution of a cluster of stars, we need to
know how they interact with their environment, particularly how much mass
they lose, and how they interact with each other. Is their evolution affected
by a companion or close encounter? In this chapter we describe the physics
and the mathematical formulation that we use to describe it. If we could we
would evolve each star in every detail (Church, Tout & Aarseth 2007) but
up to now, in practice, we have had to approximate the detailed evolution by
empirical models (Hurley, Tout & Pols 2000). As the number of bodies we can
model increases with increasing computing power, it becomes more reasonable
to include the full evolution (Chap. 13). So let us examine the physics of stars.

9.1 Observable Quantities

When we look at stars in the night sky they have two immediately discernible
properties: they vary in brightness and colour. The brightness is assessed
in terms of magnitudes. Historically, and we are going back to the ancient
Greeks here, stars fall into six magnitude classes. The brightest stars are
of first magnitude and the faintest stars visible to the naked eye are sixth
magnitude, though these are rarely visible amongst today’s city lights. The
eye measures brightness logarithmically so that a star of magnitude 5.0 turns
out to be one hundred times fainter than a star of magnitude 1.0. Modern
photometry can measure the magnitude of stars extremely accurately and in
different wavelength ranges. But these magnitudes are only apparent. A star
can vary in brightness for two reasons. First, it may be brighter because it is
intrinsically more luminous. Alternatively, it might just be brighter because
it is close to us. Indeed Herschel (1783) hoped that all stars were of similar
intrinsic luminosity so that he might map the Galaxy by taking variations in
brightness to indicate variations in distance. Today the distances to nearby
stars can be determined by accurate trigonometric parallaxes. The motion of
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the star is measured against the background of distant, apparently immovable,
stars and galaxies as the Earth moves around its orbit. Once the distance is
known, an absolute magnitude can be calculated from the observed apparent
magnitude and from this we get an estimate of the luminosity of the star.

The second observable quantity is a star’s colour. Some stars appear redder
while others are distinctly blue. The colour of a star is related to its surface
temperature. The apparent surface or photosphere of a star represents the
locus of points at which the majority of photons were last emitted or scat-
tered before they began their journey through space to the Earth. Typically,
the spectrum of radiation emitted by a star is close to that of a black body.
The hotter the black body the bluer is the peak in its spectrum. Thus blue
stars are hot while red stars are relatively cool. Another way of determining
the surface temperature of a star is to look at the dark lines in its spectrum.
These generally occur at wavelengths where an atomic transition of an elec-
tron makes the absorption of a photon particularly favourable. Historically
spectra where classified by the strength of their hydrogen lines. Those with
the strongest hydrogen lines are of type A while those with the weakest are
of type M. Hydrogen ionizes at about 10, 000K and it is stars of this temper-
ature that have the most prominent hydrogen lines. As the temperature rises
fewer and fewer atoms have bound electrons and the lines disappear from the
spectra. As the temperature falls the electrons around the hydrogen nuclei
become more and more energetically confined to the ground-state orbits. This
in turn leads to fewer hydrogen lines in the spectra. However, lines from more
weakly bound electrons and bands owing to molecular rotations and vibra-
tions become more prominent. So it is easy to distinguish the very hot O stars
from the relatively very cool M stars. The sequence of spectral types from the
hottest to the coolest normal stars follows

O B A F G K M.

Once we know the temperature and nature of a star’s atmosphere, we can
relate its absolute magnitude to a bolometric luminosity. This bolometric
luminosity L is the total energy radiated by the star per unit time.

In the early years of the twentieth century, Russell (1913), who worked
partly in Cambridge at the time, and the Danish astronomer and chemist
Hertzsprung (1905) examined the correlations of these two quantities with
each other. The resulting Hertzsprung–Russell (HR) diagram has become the
major tool for describing the evolution of stars over their lifetimes. Rather
than populating the whole of such a diagram, we find that most of the stars
lie on a band running from hot bright stars to cool faint stars (Fig. 9.1). This
is the main sequence. Because the radiation from stars is very close to a black
body, the temperature of the photosphere is close to the effective temperature
given by

L = 4πσR2T 4
eff , (9.1)

where σ is the Stefan-Boltzmann constant and R is the radius of the photo-
sphere. This means that the loci of stars of constant radius are straight lines
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Fig. 9.1. A schematic Hertzsprung–Russell diagram showing the position of stars
in a surface temperature – luminosity, or colour magnitude diagram. Temperature
increases from right to left along the horizontal axis. Colour changes from blue to
red from left to right. Most stars, like the Sun, lie along the main sequence but other
distinct groups of stars are visible, particularly in such diagrams of clusters

of slope −4 in the HR diagram so that stars at the top left of the main se-
quence are blue supergiants while those at the bottom right are red dwarfs.
In a diagram of the brightest stars, another region to the right and nearly
vertically upwards from the main sequences is prominent. These are the red
giants. In diagrams of globular clusters this giant branch splits into two dis-
tinct parts, the normal red giants and the asymptotic giant branch (AGB).
We shall see later how these are populated by stars in quite distinct evolution-
ary phases. In HR diagrams of nearby stars the fainter but relatively common
white dwarfs appear in a band below the main sequence. Also discernible as
separate though not so distinct regions are the supergiants from blue to red
across the very top of the diagram and the subgiants between the main se-
quence and the true red giants. Globular clusters have the advantage that the
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stars all lie at approximately the same distance so that, relatively though not
absolutely, the errors associated with distance measurements are significantly
reduced. Today, some very beautiful HR diagrams of globular clusters can be
plotted with the data obtained with large telescopes (Pancino et al. 2000) and
these reveal all sorts of detail. Of particular interest is the horizontal branch at
relatively constant luminosity, extending from red to blue across from the red
giants. The structure and population of this feature vary considerably from
cluster to cluster and contain clues to the age and initial chemical composition
of the constituent stars. The Sun itself lies right in the middle of the most
populated part of the main sequence so that we can deduce that it is typical
of the majority of stars. In the next sections we shall investigate the physics
and the mathematical models that have allowed us to unravel the life of a star
as it moves about the HR diagram from the main sequence to the red giant
branch, perhaps to the horizontal branch or back to the subgiant area, then
on to the AGB and finally to a white dwarf if the star has lost enough mass
to avoid a supernova explosion.

9.2 Structural Equations

The structure of a star can be described in essence by four differential equa-
tions. Two of these, that describe the variation of mass and pressure with
radius, can be called the structural equations. They are the subject of this
section. Supplemented with an equation of state, these two are the basic build-
ing blocks of a stellar model. When the equation of state depends on two
physical state variables, we must add an equation to describe the variation of
temperature through the star and another to incorporate energy-generating
processes to complete the set.

The first equation is easily derived by considering a thin shell of mass δm
and thickness δr at radius r in the star (Fig. 9.2). The mass in the shell is just
its volume multiplied by the local density ρ(r) and, when we take the limit as
δr tends to zero we obtain

dm
dr

= 4πr2ρ, (9.2)

the mass equation.
The mass interior to this shell exerts on it an attractive radial force of

magnitude δmg = 4πr2ρgδr, where g(r) = Gm/r2 is the local gravitational
acceleration and m(r) is the mass inside radius r. This must be balanced by
the differences in the pressure force on either side of the shell 4πr2[P (r+δr)−
P (r)]. Again taking the limit as δr tends to zero we obtain

dP
dr

= −Gmρ

r2
. (9.3)

This is the equation of hydrostatic equilibrium. Equations (9.2) and (9.3) are
special spherically symmetric cases of the more general equations of mass
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Fig. 9.2. The structure of a fluid sphere. The mass enclosed by a spherical surface
of radius r is m(r). A shell of mass δm of thickness δr at this radius is supported
against gravity by a pressure gradient

conservation and the Euler momentum equation of fluid dynamics when the
velocity in the fluid is everywhere zero.

If we can write P explicitly as a function of ρ only we can obtain a full
solution to the structure of the star. The simplest boundary conditions to
apply are, at r = 0,

m(0) = 0 ⇒ dP
dr

= 0 (9.4)

and, at r = R,
m(R) = M ρ(R) = 0, (9.5)

where M is the total mass of the star. It turns out that the equation of state
of very degenerate matter takes just such a form and white dwarfs can be
modelled immediately (Chandrasekhar 1939).

9.3 Equation of State

In practice pressure does not depend only on density. Figure 9.3 illustrates
the various contributions to the pressure as temperature and density vary.
Typically, the state of stellar material depends on its composition plus any
two state variables. In general, there are many contributions to the equation of
state but for most normal stars the fluid behaves very similarly to an ideal gas,
for which the pressure may be written as a function of density, temperature
T and mean molecular weight μ,

P = ρ
RT

μ
, (9.6)
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Fig. 9.3. Contributions to the equation of state as a function of temperature and
density. The thick solid lines are the run of temperature and density through zero-age
main-sequence stars of masses 0.1, 0.3, 1, 10 and 100 M�. Their centres are towards
the top right of the figure. A dashed line marks where gas and radiation pressure
are equal with increasing Pr/Pg to the left. A second dashed line indicates where the
electron chemical potential ψ = 0. To the right of this line material becomes more
and more degenerate. The shaded regions represent the range over which ionisation
of H, He and He+ and dissociation of molecular hydrogen take place. Thin solid lines
indicate the effects of pressure ionisation and dotted lines corrections to account for
plasma effects. Dot-dashed lines indicate when the fluid can be considered a plasma
and when it begins to crystallize into the solid state

where R is the gas constant per unit mass. The mean molecular weight is the
reciprocal of the number of particles, each of which contributes to the pressure
equally at a given temperature, per atomic mass unit. Thus neutral hydrogen
contributes one particle for each mass unit and has μ = 1, while fully ionized
hydrogen contributes two particles, an electron and a proton, for each mass
unit and so has μ = 1/2. Fully ionised helium contributes two electrons and
and a helium nucleus made up of two protons and two neutrons for its four
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mass units and so has μ = 4/3. Anything heavier than hydrogen and helium
is designated a metal and when fully ionized contributes approximately half
as many particles as its atomic mass, because the nucleus typically consists of
equal numbers of protons and neutrons and each positively charged proton is
balanced by an electron. Thus metals have μ ≈ 2. For a fully ionized mixture,
adding the numbers and masses, we find

1
μ

= 2X +
3
4
Y +

1
2
Z, (9.7)

where X is the mass fraction of hydrogen, Y is that of helium and Z that of
all metals and X + Y + Z = 1. In the deep interiors of stars temperatures
are such that all atoms are ionized but as the temperature falls electrons
recombine with their nuclei to form atoms in various ionization states. The
most strongly bound electrons recombine at the highest temperatures. Thus
in the Sun hydrogen recombines between about 10, 000 and 20, 000K while
iron is still not completely ionized at 100, 000K.

An important consequence of (9.7) is that the equation of state changes
as nuclear reactions convert one element to another. This is one of the driv-
ing forces behind stellar evolution and is responsible for the Sun gradually
expanding and brightening with time.

At high temperatures the pressure exerted by energetic photons becomes
comparable with that exerted by the particles and we must include a term

Pr =
1
3
aT 4, (9.8)

where a is the radiation constant.
At high densities electrons contribute a degeneracy pressure. This arises

because free electrons must occupy a discrete set of momentum states and,
as the volume to which an electron is confined is reduced, the energies of its
available states increase. Thus squeezing an electron gas increases the mo-
menta of the electrons and this requires energy. So work must be done and
the gas exerts a force against compression. The contribution to this degener-
acy pressure Pe becomes important when the electron chemical potential ψ
becomes positive. It is already becoming important in the core of the Sun and
lower-mass main-sequence stars but comes into its own in the white dwarfs
where it provides sufficient support against gravity even when the gas is cold.
Although we might expect a cold gas to consist of neutral atoms, this is not
the case at very high densities because the nuclei are so close to one another,
much nearer than the radius of an atom, that the electrons are not bound
to a particular nucleus but behave as a free gas similar to those in metal-
lic elements at room temperature. This effect of pressure ionization is also
important to some extent in the Sun.

There are various other corrections to the pressure Pc that must be in-
cluded such as plasma effects at high densities and eventually liquefaction
and crystallization to the solid state as density increases and temperature
falls.
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9.4 Radiation Transport

When temperature is important for the equation of state, we require two
further equations to describe the star. The first is for the temperature gra-
dient. This depends on the rate at which energy can be transported from
where it is generated, usually at the hot centre, through the star. One of the
three processes dominates energy transport under different conditions. Radi-
ation, or the diffusion of photons, dominates in the central parts of the Sun.
Conduction, or the diffusion of particles, is prevalent in degenerate material.
Convection, or energy transport by bulk fluid motion, operates when the tem-
perature gradient becomes too large for stable radiative transfer. This is the
case in the outer layers of the Sun.

In radiative regions we can estimate the temperature gradient by consid-
ering two surfaces of different temperatures separated by a distance λ, the
distance that a photon moves between interactions with the matter and over
which it maintains memory of the conditions when it last interacted (Fig. 9.4).
Deep in the star everything is in local thermodynamic equilibrium so that
a surface at temperature T emits energy as a blackbody providing a flux
of energy per unit area of F = σT 4, where the Stefan Boltzmann constant

= σ(T + δT )4

F = σT4 

F + δF

λ

Fig. 9.4. Radiation diffuses through the star. The interior of the star is locally
in thermodynamic equilibrium so that the radiation flux emitted by any surface
depends on the temperature of that surface. Photons travel until they are absorbed
or scattered, typically a mean free path length from where they were emitted or last
scattered. In this way heat diffuses from hotter to cooler regions
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σ = ac/4. Consider two such surfaces, one at temperature T and one at T+δT .
In our spherically symmetric star, the surfaces are spheres of area 4πr2 and T
usually decreases as r increases. We call the net energy flow through a sphere
of radius r the local luminosity Lr, and we have

Lr = 4πr2δF, (9.9)

where
δF ≈ −4σT 3δT (9.10)

is the difference between the inward flux from the surface at temperature
T+δT and the outward from the surface at T . The difference in temperature is
just the temperature gradient multiplied by the distance between the surfaces

δT = λ
dT
dr

. (9.11)

So we have
Lr ≈ 16πσr2λT 3 dT

dr
. (9.12)

The typical distance travelled by a photon between interactions, its mean
free path, depends on the opacity of the material. Opacity is defined as the
effective cross-section per unit mass seen by a photon. The probability of
interaction of a photon passing along a cylinder (Fig. 9.5) of cross-section
equal to κ times the mass in the cylinder and length λ is unity. Thus for
material of density ρ,

ρκλ = 1. (9.13)

Combining this with (9.12) we find

dT
dr

=
−κρLr

4πacr2T 3
. (9.14)

λ

ρ, κ

Fig. 9.5. The relation between mean free path and opacity. A photon is likely to
be absorbed or scattered once within a cylinder of height λ and cross-sectional area
κm, aligned with its motion, which contains one target of mass m
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This is not quite correct because we have not taken proper account of the fact
that the radiation field from a point on a surface is isotropic and not directed
towards the other surface. With somewhat more effort we should obtain

dT
dr

=
−3κρLr

16πacr2T 3
, (9.15)

which is the equation of radiative transfer.
The detailed calculation of opacity is a long and complex procedure.

Figure 9.6 illustrates how it varies with temperature and density in stellar
material. At high temperatures all material is ionized and the only source
of opacity is scattering by electrons. This is independent of temperature and
density until at very high temperatures when relativistic effects become im-
portant. At intermediate temperatures atomic processes, where electrons are
moved from one state to another by absorption of a photon, dominate. The
states may be either bound or free and a dependence

κ ∝ ρT−3.5 (9.16)

κ

T K

Z

Fig. 9.6. Opacity as a function of temperature for various stellar densities
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emerges. Just above 10, 000K the opacity drops rapidly with decreasing tem-
perature, as hydrogen recombines and fewer and fewer photons have sufficient
energy to change the electronic states. At lower temperatures it begins to rise
again as H− ions and various molecules become important sources but the
calculation becomes even more complex.

Conductivity can be described in a similar way with electrons replacing
the photons as the energy carriers. Usually, the mean free path of electrons is
much shorter than that of photons so that their effective opacity is much larger
and radiation transport dominates. However, in degenerate material electrons
are not easily scattered because they must scatter into an empty momentum
state but all neighbouring momentum states are already occupied. The mean
free path becomes very large and the fluid is effectively superconducting. In
practice, this means that degenerate regions of stars are close to isothermal.

9.5 Convection

The process of convection is sufficiently important to warrant a separate dis-
cussion. Fluid is convectively unstable when the temperature gradient is such
that a packet of material displaced vertically, parallel to the direction of grav-
ity, continues to rise or fall. Suppose we displace a blob of material by a small
distance δz upwards in the star (Fig. 9.7), the density of the material out-
side the blob changes according to the ambient gradient. Let the new density
within the blob be ρ′. Then the blob continues to rise if it is now less dense
than its surroundings,

T, p, ρ

g

δ z

T,p,ρ

T ', p', ρ' T+ zδ dT

dz
, ...

Fig. 9.7. The convective instability. A blob of fluid displaced upwards continues to
rise if its density is less than that of its surroundings when it has reached pressure
equilibrium adiabatically
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ρ′ < ρ+ δz
dρ
dz

, (9.17)

and is convectively unstable.
The sound speed in the fluid is generally short so that the blob quickly

reaches pressure equilibrium with its surroundings and

P ′ = P + δz
dP
dz

. (9.18)

Initially, the displaced blob has had no time to exchange heat with its sur-
roundings so that its density changes adiabatically, at constant entropy s. We
can then write

ρ′ − ρ = δρs =
(
∂ log ρ
∂ logP

)

s

ρ

P

dP
dz

δz. (9.19)

The adiabatic change in density with pressure can be found from the equation
of state and is written as

1
Γ1

=
(
∂ log ρ
∂ logP

)

s

. (9.20)

From the structure of the star we also have

dρ
dz

δz =
(

d log ρ
d logP

)
ρ

P

dP
dz

δz. (9.21)

and we define Γ by
1
Γ

=
(

d log ρ
d logP

)
ρ

P
, (9.22)

the density exponent with respect to pressure in the surrounding material.
Because P must always fall as z increases, in order to maintain hydrostatic
equilibrium, dP/dz < 0 always and so the fluid is unstable to convection if

1
Γ
<

1
Γ1

, (9.23)

the Schwarzschild criterion.
By considering the ideal gas equation of state, we can see that Γ is large

when the temperature gradient in the star is large. Thus, just as in a boiling
kettle, convection is driven when there is a strong heat source that would drive
a very large temperature gradient. Convection is also induced by a small value
of Γ1. This occurs in ionization regions where the number of particles, and so
the pressure, increases over a small temperature range.

In unstable regions efficient turbulent mixing of the fluid takes place and
this leads to an adiabatically stratified region of constant entropy,

Γ ≈ Γ1. (9.24)
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So, in convective regions, we write the temperature gradient as

dT
dr

= ∇a
T

P

dP
dr

+ Δ∇T, (9.25)

where Δ∇T is the superadiabatic gradient. It is one of the least certain fea-
tures of stellar evolution but is usually calculated by mixing length theory
(Böhm-Vitense 1958). Throughout most of a convective region it is small and
not important but at the outer edge of the solar convection zone it becomes
relatively large and determines the adiabat on which the whole convective zone
lies. It can be calibrated by ensuring that the radius of a model of the Sun
fits the measured radius but there is no guarantee that the same calibration
or even the same theory can be applied to other stars.

There are further complications that have yet to be fully satisfactorily
addressed. Convective overshooting might occur at Schwarzschild boundaries
because, although the acceleration of a blob goes to zero at the edge of a
convective region, its velocity does not. However, the deceleration of a blob
that crosses a boundary is generally extremely fast and any overshooting quite
negligible. Even so the concept is still popular because there is much evidence
for composition mixing in radiative regions that does not have an established
cause. Semiconvection occurs when there is a composition gradient. Convec-
tion may be stable according to the Schwarzschild criterion if no material
is mixed across the boundary but unstable if it is. There is an equilibrium
when just enough material mixes to maintain stability. What is uncertain is
the timescale on which this equilibrium is attained. Varying it significantly
changes some evolutionary phases and in particular the size of the burnt core
at the end of helium burning (Dewi, Stancliffe & Tout, private communica-
tion).

9.6 Energy Generation

The luminosity of a star is created by various sources of energy. The change
in luminosity from radius r to r+ δr is the total energy generated by material
in the shell of mass δm between the two radii (Fig. 9.8). Thus for an energy
generation rate per unit mass of ε,

dLr

dr
= 4πr2ρε. (9.26)

This is a simple equation but a great deal of complexity is hidden within the
rate ε, which depends on the state of the fluid, particularly its temperature,
and its composition.

There are three major contributions. First as a star contracts the fluid
releases gravitational energy. This is the dominant source of luminosity during
star formation when a gas cloud collapses to form the star and before its core
is hot enough to ignite hydrogen fusion. It is occasionally important later in
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r+δ r
r

Lr

Lr+  r = Lr +   Lδ rδ

2rδL 4 rε δρπ r=

Fig. 9.8. Luminosity variation. The local luminosity Lr of a star is the energy
flux outwards through the sphere of radius r within the star. Luminosity increases
between r and r+δr when there is energy generation in the shell of mass δm between
these spheres

the evolution too when contraction can release energy at a comparable rate
to nuclear burning. For an ideal gas the contribution is

εgrav = −CVT
∂

∂t

(

loge

P

ργ

)

, (9.27)

where γ = CP/CV is the ratio of the specific heat at constant pressure CP

to the specific heat at constant volume CV. This term is negative when the
star is expanding but it generally does not dominate nuclear energy sources.
It also introduces stellar evolution via the time derivative.

Secondly, energy is generated by nuclear reactions and the discussion of
these will compose the major part of this section. Thirdly, at very high tem-
peratures and densities, neutrino loss processes become important. Reversible
weak reactions release two energetic neutrinos, both of which escape from the
star because the matter cross-section to neutrinos is very small. Their mean
free path is much greater than the radius of the star. The contribution εν is
always negative.

9.6.1 Nuclear Burning

One 4He nucleus is less massive than four protons and two electrons. This is
because the magnitude of the binding energy per nucleon is larger in helium-4.
It is more stable. In general, the binding energy of a nucleus

EB = (Zmp + [A− Z]mn −mnuc)c2 (9.28)
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Fig. 9.9. Binding energy per nucleon for nuclides of atomic mass A. The most
stable isotope is plotted for each atomic number. Up to the iron group elements
around 56Fe the binding energy per nucleon increases and energy is usually released
in nuclear reactions that create heavier stable nuclei. For higher mass nuclei the
energy per nucleon decreases with A. Energy is required to create these nuclei from
less massive ones

for a nucleus of mass mnuc containing Z protons of mass mp and A − Z
neutrons of mass mn. This is zero for a hydrogen nucleus, which is just a
single proton Z = A = 1. Figure 9.9 shows the binding energy per nucleon
EB/A as a function of atomic number A. This average binding energy tends to
rise up to iron-56 and then falls again. There are notable peaks of stability at
helium-4, carbon-12 and oxygen-16. When any of these are formed from less
stable nuclei, the binding energy is released. As A increases beyond 56, the
binding energy per nucleon falls again so that it is not energetically favourable
to fuse lower-mass isotopes to form higher-mass ones.

9.6.2 Hydrogen Burning

The energy released when converting four protons to one helium-4 nucleus is
26.73MeV. However, the actual energy available to the star depends on the
reaction pathway. Energy is released in three forms, high-energy gamma rays,
kinetic energy of the reacting particles and neutrinos. The first two forms are
thermalized locally but once again the neutrinos can escape from the star
and carry off their energy. At relatively low temperatures, as in the Sun, the
reaction proceeds via the proton–proton chain. The first and slowest reaction
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is the combination of two protons to form a deuterium nucleus

1H + 1H → 2H + e+ + ν. (9.29)

The neutrino escapes with an energy of 0.26MeV while the positron annihi-
lates with an electron

e+ + e− → γ (9.30)

to leave an energetic gamma ray. Another proton can then react with the
deuterium nucleus,

1H + 2H → 3He + γ, (9.31)

and two of these 3He nuclei can then combine,

3He + 3He → 4He + 2 1H + γ. (9.32)

The actual energy released to the stellar material is 26.20MeV because two
neutrinos are lost for each 4He nucleus created. This is the ppI chain. At higher
temperatures the ppII and ppIII chains, which involve lithium, beryllium and
boron, also operate but each of these loses more energy in neutrinos.

Above a temperature of 2 × 107 K hydrogen burns faster via a catalytic
cycle, the CNO cycle,

12C(p, γ)13N(, e+ν)13C(p, γ)14N(p, γ) (9.33)

15O(, e+ν)15N(p, α)12C (9.34)

with a rare branch when 15N captures a proton before it decays

15N(p, γ)16O(p, γ)17F(, e+ν)17O(p, α)14N. (9.35)

The component of the cycle 12C(p, γ)13N represents

12C + 1H → 13N + γ (9.36)

etc. The neutrino losses are greater than those in the ppI chain so that the
total energy available per 4He nucleus created is reduced to 23.8MeV. The core
temperature of main-sequence stars increases with their mass and the CNO
cycle begins to dominate at about 1.5M�. Hydrogen burns faster but less
efficiently because of the greater neutrino losses.

9.6.3 Reaction Rates

Quite a complicated mixture of theory and experiment is required to estimate
reaction rates and details may be found in Clayton (1968). Charged-particle
reactions can only occur at all because the most energetic nuclei in the tail of
the Maxwellian distribution are able to quantum-mechanically tunnel through
the Coulomb barrier. Once they reach the nucleus the bound states tend to
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be of much lower energy and they face being reflected unless they can enter
a similar energy resonant state. All these lead to very strong temperature
dependences for nuclear reactions. The energy generation rate of the pp chain
at 107 K

εpp ∝ ρT 4.6, (9.37)

and for the CNO cycle at 2 × 107 K

εCNO ∝ ρT 14. (9.38)

In most cases these temperature dependences lead to thermostatic control of
the reactions. If energy production were to rise, the star would expand in
response and the temperature would fall. As a result hydrogen burning takes
place at a temperature much too low for helium burning which in turn takes
place at a temperature much too low for carbon burning so that stars use up
one fuel, at a particular radius, at a time before igniting the next.

As mentioned before, as nuclear reactions change the composition of the
material, the star evolves because the equation of state is changed. The opac-
ities and the energy generation rates, which depend on the state, also change.
Once a star has begun nuclear burning it is these composition changes that
drive evolution.

9.6.4 Helium Burning

Above 108 K, with hydrogen long gone, helium can fuse to carbon. First, two
4He nuclei react and form the unstable 8Be∗.

4He + 4He � 8Be∗, (9.39)

This is a resonant state but, unlike the deuterium nucleus formed in the pp
chain, there is no stable state of 8Be to which it can decay. Indeed, there is
no stable nucleus of atomic mass 8 at all. The 8Be∗ nucleus has no choice but
to split up into two 4He nuclei again with a half life of 3 × 10−16 s. Though
short, this is long enough for a third α-particle to collide if the temperature is
high enough. Interestingly, there is a resonant state of 12C not very different
from that of the colliding nuclei. This reaction too is reversible but now there
is a stable state into which the 12C∗ nucleus can decay, by the emission of two
photons to conserve spin, and complete the process,

8Be∗ + 4He � 12C∗ → 12C + γ + γ. (9.40)

The first two reactions are endothermic. Formation of an 8Be∗ nucleus
requires 0.092MeV and formation of the 12C∗ requires a further 0.285MeV.
But when this decays to the stable 12C the photons extract 7.65MeV. The
total energy liberated by the whole process is therefore 7.27MeV, 0.606MeV
per nucleon or about one tenth of that released during hydrogen burning. The
energy generation rate
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ε3α ∝ ρ2T 40. (9.41)

This is perhaps the most extreme sensitivity to temperature found in nature
and in the Sun it will lead to a thermonuclear runaway when it ignites in the
degenerate helium ash in the core.

At temperatures required to run this triple-α reaction it is easy to add
another helium nucleus

12C + 4He → 16O + γ, (9.42)

and in many cases helium burning produces more oxygen than carbon.

9.6.5 Later Burning Stages

Hydrogen and helium burning account for most of the energy production in a
star’s life but stars more massive than about 8M� can go on to ignite carbon
at T ≈ 5 × 108 K,

12C + 12C →

⎧
⎪⎨

⎪⎩

20Ne + 4He
23Na + 1H
23Mg + n rare.

(9.43)

The next major phase is neon burning by photodisintegration. Temperatures
of about 109 K are sufficient to provide energetic photons capable of ejecting an
α-particle from a neon nucleus. At these temperatures the α-particle can read-
ily combine with another neon nucleus and produce more stable magnesium,

γ + 20Ne � 16O + 4He. (9.44)
20Ne + 4He → 24Mg + γ. (9.45)

At 2 × 109 K oxygen can burn to produce a variety of products including
silicon,

16O + 16O → 28Si + 4He + γ, (9.46)

then at 3 × 109 K photons are energetic enough to break up the silicon,

γ + 28Si � 24Mg + 4He. (9.47)

This is followed by a series of α captures and photodisintegrations that culmi-
nate in the iron group elements. The actual combination of isotopes depends
on the nuclear statistical equilibrium, which is controlled by the number of
protons and neutrons present. When numbers are about equal the dominant
product is 56Ni, which is the power source of most supernovae as it decays to
56Fe via 56Co.
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9.7 Boundary Conditions

We now have the set of four equations of stellar structure together with the
time dependence that drives stellar evolution. We discussed boundary con-
ditions in Sect. 9.2. We want the surface of a star to be what we see when
we look at it. This is the surface from which the photons that reach us are
emitted. Photons escape freely when the optical depth

τ =
∫ ∞

r

κρdr ≈ 1. (9.48)

More carefully, we can use a thin grey atmosphere with the Eddington Closure
approximation (Woolley & Stibbs 1953). Then, at τ = 2/3,

Lr = 4πR2σT 4 (9.49)

and with hydrostatic equilibrium

P ≈ 2
3
g

κ
. (9.50)

With yet more sophistication, we can make a full model of the radiative trans-
fer in the atmosphere and fit it to the stellar interior. Unfortunately, the so-
lution to this is sufficiently complex to consume as much time as a full stellar
evolution sequence and so tends not to be used unless absolutely necessary.

9.8 Evolutionary Tracks

Figure 9.10 shows the path followed in the HR diagram for stars of 1, 5
and 32M� as they evolve from the zero-age main sequence when no hydrogen
has yet been converted to helium. They have been evolved with the Cambridge
STARS code that is described in more detail in Chap. 13. There details of how
to obtain and run the program can be found so that the reader can reproduce
this and similar diagrams. On the ZAMS our 5M� star has a radius of 2.65R�
and a luminosity of 540L�. It is burning hydrogen to helium via the CNO
cycle in its core. Because of the relatively strong temperature dependence of
the CNO reactions, the burning mostly occurs right at the centre but the
temperature gradient drives convection out to 1.2M� and the whole of this
core is burnt. The core shrinks in both mass and radius as burning proceeds
so that only the inner 0.53M� is completely converted to helium. Just before
this, after 8.24 × 107 yr, when the star’s luminosity has reached 900L� and
its radius grown to 5.35R�, the fraction of hydrogen at the centre by mass
has dropped to 0.05. At this point it is more energetically favourable for the
whole star to contract. This is the hook in the HR diagram at the end of
the main sequence. Shortly afterwards (2.3 × 106 yr later), central hydrogen
is exhausted completely and burning moves to a shell surrounding the core.
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Fig. 9.10. Model tracks in the Hertzsprung–Russell diagram from Pols et al. (1995)

After another 3.9 × 106 yr this core has grown so large (to about 0.6M�)
that it can no longer support itself with gas pressure. It starts to contract,
gradually forcing the nuclei and electrons together but the core does not get
very degenerate at this stage. It does, however, rapidly contract and the star
moves over to the giant branch in the relatively short time of 8.4 × 105 yr.
As the core contracts the envelope expands. Though no one has yet explained
simply why it expands, we do appear to include all the relevant physics because
our models expand. A star is complex and behaves in very non-linear ways
so it is often not easy to predict what will happen or even to explain why
it has! An important result of the expansion is that the surface temperature
descends and convection sets in reaching right down to parts of the stellar core
that have previously been processed. Once established on the giant branch,
the helium core grows as hydrogen burns outwards. It contracts in radius as
it does so and heats up. This raises the temperature at the burning shell so
that the reactions run faster and the luminosity rises. The star makes its first
ascent of the giant branch.

The core, growing in mass but contracting in radius, continues to heat up
until at 1.2×108 K it is hot enough for helium to ignite. Once again the helium
burning drives convection in the core which this time grows as the burning
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proceeds. Eventually, helium fuel is exhausted in the core too and helium
burning moves to a shell that starts to follow the hydrogen-burning shell out
through the envelope. During core helium burning, our star had settled back
to a lower luminosity, shrunk and lost its deep convective envelope. It now
moves back over to the giant branch but only slowly resumes the same rising
track so we call this AGB.

At this point we should note that the production of elements in stars is
not on its own enough to ensure their availability when a new generation of
stars and planets condense. The processed material must actually be somehow
driven off into the interstellar medium at a velocity that exceeds the escape
velocity of the star. Indeed, stars leave behind remnants that might be white
dwarfs, neutron stars or black holes depending on mass and these remnants
swallow a substantial part of the processed core in the most common stars.

In comparison, two significant differences characterise the evolution of a
1M� star. First, the central temperature on the main sequence is lower so
that hydrogen burning proceeds via the pp chain rather than the CNO cycle.
Then the lower core temperature on the giant branch means that the core
becomes very degenerate before it reaches the temperature at which helium
can ignite. Because the degenerate equation of state does not respond to the
rising temperature as the reaction generates energy, it is not thermostatically
controlled in the normal way. This is coupled with the incredible temperature
sensitivity so that a thermonuclear runaway ensues during which the energy
production reaches the luminosity of a small galaxy! But it lasts only a few
seconds before the degeneracy is raised and the star drops rapidly down the
giant branch to begin stable core helium burning. The energy produced is
absorbed by the star’s envelope and is hardly noticed at its surface. From
then it evolves much like the 5M�. Once high on the AGB, it is mass loss
that controls the evolution of these stars. A very strong dusty wind eventually
removes all the hydrogen envelope and exposes the burning shells. These cool
and extinguish leaving a white dwarf that rapidly falls in luminosity to below
the main sequence and then cools from left to right across the diagram.

The 32M� star on the other hand goes on to ignite carbon in its core,
which is processed all the way to iron. When the iron core reaches the
Chandrasekhar mass of 1.44M�, the maximum that can be supported by
electron degeneracy, it collapses to a tiny neutron star. The energy released
blows the entire envelope off in a spectacularly bright supernova.

9.9 Stellar Evolution of Many Bodies

In Chap. 10 Jarrod Hurley describes how single-star stellar evolution can be
incorporated in N -body calculations. It is important to know how the masses
of the stars change both by mass loss in stellar winds and any sudden mass
loss in a supernova because this affects the dynamics of the cluster. As the
bodies interact, dynamics can also influence the stellar evolution. This is most
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apparent when stars are in or form close binary systems. These form the topic
of Chap.11.
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10.1 Motivation

The advent of the Hubble Space Telescope (HST), with its ability to peer deep
inside the globular clusters (GCs) of our Galaxy and resolve individual stars
(Paresce et al. 1991), provided reason enough to include stellar evolution in
cluster models. We only have to look at the beautiful images of stars in the core
of, say, Omega Centauri1 (Carson, Cool & Grindlay 2000) to be motivated to
produce colour-magnitude diagrams (CMDs) from simulations to match those
emanating from HST. There are also a number of questions relating to stellar
populations in star clusters that require a combination of stellar evolution
and stellar dynamics for investigation. For example, population gradients are
observed, which indicate a central concentration of blue stragglers (BSs) as
well as a central depletion of red giants (Yanny et al. 1994). A possible expla-
nation is that close encounters between stars in the dense core of a GC leads
to enhanced production of BSs in collisions (or mergers) of main-sequence
stars. Encounters are also then expected to enhance the stripping of the en-
velopes of giant stars to produce blue horizontal branch stars or white dwarfs
(WDs). The situation is not straightforward though, as evidenced by the clas-
sic second-parameter pair of GCs, M3 and M13 (Ferraro et al. 1997). Here
we have two clusters of the same mass, density, metallicity and (apparently)
age, but with dramatic differences in their blue straggler and blue horizon-
tal branch star populations. Also, HST is not alone in exposing the cores of
star clusters – the Chandra X-ray Telescope has provided a wealth of comple-
mentary information on objects such as millisecond pulsars and cataclysmic
variables (Grindlay et al. 2001a,b).

Aside from a desire to produce models to match observations of stellar
populations in star clusters, there is a more basic need for stellar evolution in
N -body models. Here we are talking specifically about mass loss from stars
as they evolve. This can have a dramatic effect on the lifetime and structure

1http://hubblesite.org/newscenter/archive/releases/2001/33/image/a
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of a star cluster. Put simply, mass lost from stars in stellar winds is expected
to escape from a cluster and therefore weakens its potential. The cluster then
expands, which leads to a temporary increase in the loss of stars across the
tidal boundary. This weakening of the potential leaves the cluster more ex-
posed to the possibility of disruption if, for example, the cluster encounters
a giant molecular cloud or orbits through the Galactic disc. In the long-term
stellar evolution mass loss affects the timescale for two-body relaxation and
core-collapse (the reader is directed to Meylan & Heggie 1997 for an overview
of the processes involved in cluster evolution). Thus stellar and cluster evolu-
tion are intertwined and an accurate description of the former in concert with
the dynamics is required.

10.2 Method and Early Approaches

To meet the needs described above, there are a minimum set of variables
that a stellar evolution algorithm must be able to provide within the N -body
code. In order to detect and enact collisions between stars, the stellar radius is
required for each star in the model. To produce CMDs requires the luminosity
and effective temperature (or radius) of each star. The mass of each star is
required and information on the mass and radius of the core is important for
determining the nature of stellar remnants as well as the outcomes of collisions
(and the inclusion of binary evolution). Therefore, the algorithm must be
able to account for the mass, size and appearance of the N -body stars as the
cluster evolves. Ideally, it should be able to do this with metallicity as a free
parameter. The open clusters of the Galaxy typically contain stars of close to
solar metallicity while the GCs are metal-poor (see Meylan & Heggie 1997),
and in comparison the star clusters of the Large Magellanic Cloud exhibit
a wide range of metallicity (Mackey & Gilmore 2003). This is an important
distinction to make because the evolution timescale and appearance of a star
depends critically on its composition as well as its mass.

When deciding on an appropriate stellar evolution method, there are three
approaches from which to choose, (i) a detailed evolution code, (ii) look-up
tables and (iii) fitted functions. An overriding concern is that the stellar evo-
lution algorithm should not impede the progress of the N -body calculations:
the algorithm must be robust and provide rapid updating of the necessary
variables for all possible stages of evolution. The robustness requirement has
always been a stumbling block for using a detailed evolution code to provide
stellar evolution because the codes are liable to break down at critical stages
in the evolution. However, steps have recently been taken to overcome this
shortcoming and live stellar evolution in N -body simulations is now an excit-
ing possibility. Computational constraints make this method more relevant to
the large-N regime. At present, look-up tables constructed from the output of
a series of detailed evolution calculations represent a more reliable approach.
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These require interpolation and the associated data files can be very large
if a fine grid in mass is used to ensure accuracy, especially when a range of
metallicities is also considered. This would not be of much concern today but
it was in the early to mid-1990s when including stellar evolution in dynam-
ics codes was under serious consideration and computing memory was at a
premium. As a result, the third approach – a set of functions approximating
the detailed dataset – has proven to be the most popular to date. This is
the most time-consuming approach to set up, but the reward is a relatively
compact algorithm that lends itself well to the requirements of an N -body
code.

One drawback of the fitted function approach is that much of the informa-
tion provided by a detailed stellar evolution code is discarded and not available
to the dynamics code. This could be important, for example, in the case of
stellar collisions where the outcome of the collision and nature of the collision
product depends on the internal density profiles of the colliding stars. This is
circumvented somewhat by also predetermining the collision outcomes based
on prior calculations (see Hurley, Tout & Pols 2002). Another potential prob-
lem with this approach to stellar evolution is that if the detailed models on
which the functions are based become outdated for any reason it is non-trivial
to generate a new set of functions. Nevertheless, the fitted function approach
is the method of choice in the codes nbody4 and nbody6 and has proven
successful to date.

An early approach to combining stellar and dynamical evolution was pro-
vided by the Fokker-Planck models of Chernoff & Weinberg (1990). This was
a two-step method based on an expression for the main-sequence lifetime of
a star as a function of stellar mass and a WD initial-final mass relation, i.e.
at the end of the main sequence a star would lose mass instantaneously and
become a white dwarf. Even earlier attempts had employed simple schemes to
describe mass loss in supernovae events (e.g. Wielen 1968), see Aarseth (2003)
for an overview. In their population synthesis work, Eggleton, Fitchett & Tout
(1989) provided a more sophisticated algorithm that described the luminosity,
radius and core mass of the stars for a range of evolution phases. This treat-
ment was included in nbody4 in 1994 and is still adopted by other dynamics
codes. Improvements were made to this algorithm by Tout et al. (1997), specif-
ically for use in nbody4. The next major development in the fitted function
approach came with the creation of the Single Star Evolution (SSE) package
by Hurley, Pols & Tout (2000). This was based on an updated set of de-
tailed stellar models that included convective overshooting and for the first
time metallicity was a free parameter – all previous algorithms were solar
metallicity only. It also included an expanded range of evolution phases, a
more detailed description of the evolution within each phase and an updated
mass-loss algorithm. SSE currently provides stellar evolution in nbody4 and
nbody6 and is outlined below. A general introduction to stellar evolution
theory has been presented in Chap. 9.
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10.3 The SSE Package

The goal here is to provide an overview of the method used to construct the
SSE package and to discuss some aspects relevant to inclusion in an N -body
code. A full description of the SSE package is given in Hurley, Pols & Tout
(2000).

The basic idea of the algorithm is to break the evolution of a star into
a series of evolution phases. These are listed in Table 10.1. Each phase has
an associated index, kstar, which identifies the stellar type.2 The phases fall
into three groupings, normal nuclear burning evolution, kstar ∈ [1, 6], naked
helium star evolution, kstar ∈ [7, 9], and remnant evolution, kstar ∈ [10, 14].

All stars are assumed to be born on the zero-age main sequence (ZAMS)
where core hydrogen burning is initiated. Stars then move through a series
of phases as they evolve, although a particular star may not experience all
phases. For example, a 1M� star stays on the main sequence (kstar= 1)
for about 11Gyr before quickly passing through the Hertzsprung gap phase
(kstar= 2) as hydrogen burning commences in a shell surrounding the he-
lium core. It then ascends the giant branch (kstar= 3) until helium is ignited
degenerately in the core and the core helium flash brings the star to the core-
helium burning, or horizontal branch, phase (kstar= 4). This is as far as
a 1M� star would get within the age of the Galaxy. If for some reason the
star was stripped of its envelope while on the giant branch, as a result of
a collision or close binary evolution, it would become a helium white dwarf
(kstar= 10). Otherwise, given enough time it would eventually evolve to be-
come a WD comprised primarily of carbon and oxygen (kstar= 11). A 5M�

Table 10.1. Evolution phases identified in SSE and the assigned kstar index

kstar Evolution phase kstar Evolution phase

1 main sequence 10 helium white dwarf
2 Hertzsprung gap 11 carbon oxygen white dwarf
3 first giant branch 12 oxygen neon white dwarf
4 core helium burning 13 neutron star
5 early asymptotic giant branch 14 black hole
6 thermally pulsing AGB
7 helium main sequence
8 helium Hertzsprung gap
9 helium giant branch

2There is an additional phase (kstar= 0) not listed, which is used to denote
low-mass main-sequence stars with mass less than 0.7 M�. This is carried over from
Tout et al. (1997) and distinguishes stars with deeply or fully convective envelopes,
which respond differently to mass changes during binary evolution (see Chaps. 11
and 12).
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star evolves through phases 1 → 6 before becoming a 1M� carbon oxygen
white dwarf (kstar= 11). This takes about 100Myr. The asymptotic giant
branch (AGB) is divided into two separate phases by the the onset of second
dredge-up or, more generally, the time at which the growing carbon oxygen
core reaches the helium core in mass. On the early AGB (kstar= 5), lumi-
nosity is dominated by a helium-burning shell. At the onset of the thermally
pulsing AGB (kstar= 6), a hydrogen shell source is ignited and subsequently
provides the bulk of the luminosity. Thermal pulses that reduce the growth of
the core mass are modelled during this phase. Stars of approximately 8M�
ignite carbon on the AGB and evolve to become oxygen neon white dwarfs
(kstar= 12). More massive stars (10–25M�) evolve to become neutron stars
(kstar= 13) and even more massive stars become black holes (kstar= 14).
A 20M� star, for example, evolves through phases 1 → 2 → 4 → 5 → 13
in approximately 10Myr. In this case, central helium burning is ignited dur-
ing phase 2 so that phase 3 is skipped. Furthermore, a 25M� star sheds its
envelope during phase 4 and thus becomes a naked helium main-sequence
star (kstar= 7) rather than reach the AGB. It then evolves onto the helium
Hertzsprung gap (kstar= 8) and giant branch (kstar= 9) before becoming
a black hole. Transitions from 12 → 13 and 13 → 14 are also possible through
mass accretion in a close binary (see Chap. 12 and Hurley, Tout & Pols 2002,
for details). Note that the quoted evolution times and landmark masses are
for solar metallicity and vary for different composition.

The SSE package comprises a set of analytical evolution functions that
provide quantities such as the luminosity, radius and core mass for a star
which evolves through the phases mentioned above. Input variables are the
mass, M , metallicity, Z, and age of the star. The method used in constructing
SSE was to first find functions to fit the end-points of the various evolutionary
phases as well as the timescales. Then the behaviour within each phase was
fitted. A starting point was the set of formulae provided by Tout et al. (1996)
to describe the ZAMS luminosity and radius as a function of M and Z. This
was then extended to fit aspects of the evolution, such as the luminosity
and radius at the end of the main sequence, with rational polynomials that
are continuous and differentiable where possible. For example, the formula to
describe the time taken for a star to evolve from the ZAMS to the base of the
giant branch is

tBGB =
a1 + a2M

4 + a3M
5.5 +M7

a4M2 + a5M7
, (10.1)

where the coefficients an are functions of Z. Data to create the functions for
the standard nuclear burning phases was taken from the detailed models of
Pols et al. (1998). The models cover a range in mass from 0.1 to 50M� and a
range of metallicity from 0.0001 to 0.03 with Z � 0.02 being solar. The result-
ing functions are accurate to within 5% of the detailed stellar models over all
phases of the evolution. The errors introduced by this approach are less than
the intrinsic errors of the detailed models themselves, owing to uncertainties
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in the input physics. Note that the functions can be safely extrapolated up to
100M�, but for greater mass SSE evolves the star using timescales and quan-
tities for a 100M� star. Extrapolation outside of the Z range of the models
is not recommended.

The functions for the naked helium star phases were fitted to models pro-
duced by Onno Pols (see Dewi et al. 2002 for some details). The luminosity
evolution of white dwarfs in SSE was initially modelled according to standard
cooling theory, but has subsequently been expanded to reflect better current
white dwarf models (see Hurley & Shara 2003 for details). Radii for white
dwarfs come from Eq. (17) of Tout et al. (1997) and mass-dependent lumi-
nosities and radii are also assigned to neutron stars and black holes (see Hurley
et al. 2000). Another change to SSE subsequent to Hurley, Pols & Tout (2000)
is the adoption of the prescription suggested by Belczynski, Kalogera & Bulik
(2002) for calculating the masses of neutron stars and black holes. Related
to this, the default maximum mass for a neutron star is now assumed to be
3.0M� rather than 1.8M� as suggested in Hurley, Pols & Tout (2000) – this
is an adjustable input parameter.

The models of Pols et al. (1998) neglect mass loss from the surface of a
star owing to a stellar wind. However, the SSE package supplements these
models by including a prescription for mass loss in a simple subroutine form
that can easily be altered or added to. This prescription is drawn from a
range of current mass-loss theories available in the literature. It is applicable
to all nuclear burning evolution phases (kstar ∈ [1, 9]) and includes standard
Reimers’ mass loss (Kudritzki & Reimers 1978) for giants, pulsation-driven
winds for AGB stars and a Wolf-Rayet like mass loss for helium stars. The
reader is referred to Sect. 7 of Hurley, Pols & Tout (2000) for full details.
To achieve a smooth transition from the Pols et al. (1998) models (without
mass loss) to the beginning of remnant evolution SSE employs perturbation
functions that alter the radius and luminosity of a star as the envelope be-
comes small in mass. SSE also follows the spin evolution of a star and includes
magnetic braking.

The SSE package can be obtained by contacting the author or from
http://astronomy.swin.edu.au/jhurley/bsedload.html (where the asso-
ciated binary evolution package is also available). It provides a rapid and reli-
able method for evolving stars and is therefore well suited for use in population
synthesis and dynamics codes. The bulk of the SSE functions are contained in
a subroutine called zfuncs.f, and before any of these are used the subroutine
zcnsts.f must be called to set all the Z-dependent coefficients (this in turn
requires the zdata.h data file). The routine hrdiag.f determines which evo-
lution stage a star is currently at and calculates the appropriate properties
such as luminosity, radius and core mass. It must be preceded by a call to
star.f, which sets the timescales for the evolution phases (as a function of
M and Z) as well as various landmark luminosities. Other associated routines
are: mlwind.f, which calculates the current mass-loss rate, mrenv.f, which

http://astronomy.swin.edu.au/jhurley/bsedload.html
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Table 10.2. Subroutines in nbody4 and nbody6 associated with stellar evolution

SSE routines Related routines

hrdiag.f fcorr.f ( ← mdot )
magbrk.f hrplot.f∗ ( ← output )
mlwind.f instar.f∗ ( ← start )
mrenv.f kick.f ( ← fcorr )
star.f mdot.f∗ ( ← intgrt )
zcnsts.f mix.f∗ ( ← cmbody )
zdata.h trdot.f∗ ( ← instar/mdot )
zfuncs.f

corerd.f cmbody.f

gntage.f data.f

mturn.f

routines marked with ∗ call hrdiag directly

calculates the mass and radius of the convective envelope (if one exists), and
magbrk.f, which determines the rate of angular momentum change owing
to magnetic braking. These are the main SSE routines. They are listed in
the left-hand column of Table 10.2 along with some further routines that are
mentioned in the next section.

10.4 N -Body Implementation

The core SSE routines, as described in the previous section, are included in
the N -body codes in their entirety. That is to say, they operate indepen-
dently of the structure of the N -body codes – if any of these routines are
updated in the SSE package, they can simply be copied into nbody4 and
nbody6 without any further concern. This also means that a routine such as
hrdiag.f could be swapped for any other routine that sets the stellar param-
eters provided that the current interface, or subroutine arguments, are the
same. The SSE subroutines that are involved in the N -body codes are shown
in Table 10.2. Also shown are all nbody4/6 subroutines that either interact
with these routines directly or are associated with the stellar evolution pro-
cedure in some way. Note that the subroutines that call hrdiag.f have been
highlighted and it was also considered instructive to identify from where in
nbody4/6 these routines were called (as shown in the parentheses on the far
right).

Within Table 10.2 there exist some grey areas. For example, trdot.f is ac-
tually a SSE routine that calculates the appropriate stellar evolution timestep
for a star based on its type and the restriction that the radius should not
change by more than 10% in a single timestep. This is listed in the right-hand
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column of Table 10.2 as an N -body routine because it contains additional lines
of code specific to nbody4/6. The same goes for kick.f, which is a SSE rou-
tine that sets the velocity kick for newly born neutron stars and black holes.
Some subsidiary SSE routines are utilised by nbody4/6 and these are also
listed in Table 10.2 (on the left-hand side below the dividing line). The rou-
tine corerd.f contains a function to calculate the core radius of a star and is
rendered somewhat obsolete by the combination of hrdiag.f and zfuncs.f.
However, it is still used in nbody4/6 for convenience. The routine mturn.f
provides an estimate of the turn-off mass of a star cluster, the most massive
star that currently resides on the main sequence, based on the current time
and the SSE function that calculates the main-sequence lifetimes of the stars.
It is not a routine that is essential to the evolution algorithm. On the other
hand, the SSE routine gntage.f is an essential component of a stellar evolu-
tion/dynamics interface, but its use is more relevant in a discussion of binary
evolution. Given a stellar type, current mass and core mass of a star, this
routine calculates an appropriate age and initial mass. Thus it is essentially
an inverse of hrdiag.f and is used to set the parameters of stars produced in
mergers and collisions.

Before proceeding to give an overview of the nbody4/6 stellar evolution
algorithm, it is first pertinent to describe the associated stellar variables. Each
star has an initial mass, body0, a current mass, body, a radius, radius, a lu-
minosity, zlmsty, spin angular momentum, spin, and a stellar type, kstar.
These are all common arrays of size NMAX where NMAX is set in params.h and
must be greater than N to accommodate binaries. A star of index i has quan-
tities saved at the ith position of these arrays, e.g. body0(i). Other quan-
tities such as the core mass are not stored and are obtained from hrdiag.f
as required. The need to keep track of both the current and initial masses
is driven by the stellar evolution algorithm. In both SSE and its predeces-
sor (Tout et al. 1997), it was recognised that the evolution timescales and
landmark luminosities depend on the initial mass whereas the stellar radius
is more correctly a function of the current mass. Note that both body0 and
body are in dimensionless N -body units, and the scale-factor ZMBAR (or equiv-
alently SMU) is used to convert to solar masses. Similarly, radius is converted
to solar radii using SU and spin is converted to units of M�R2

� yr−1 using
SPNFAC.

To allow stars to have different update frequencies, each star has an associ-
ated stellar evolution update time specified by the tev array. This recognises
that massive stars, and the stars in advanced evolution stages such as on
the AGB, require more frequent updates than, say, low-mass main-sequence
stars or white dwarfs. Thus it would not be computationally efficient to have
the update frequency of all stars dictated by the most rapidly evolving star at
the time. A second update variable, tev0(i), is also utilised. This denotes the
time at which star i was last updated, as opposed to tev(i), which represents
the next required update time, and the two are used to compute the amount
of mass lost between updates. Also associated with the time-keeping for each



10 N -Body Stellar Evolution 291

star is a quantity called epoch. This is a product of the SSE package and is
used to calculate the effective stellar evolution age of a star, i.e. if tphys is
the current physical time in Myr, the stellar evolution age of star i is tphys –
epoch(i). To illustrate the need for such a variable, consider a star that has
just lost its envelope on the AGB and evolved to become a white dwarf. The
luminosity evolution of a white dwarf is calculated from a cooling law that
is a function of the time elapsed since the birth of the white dwarf. So the
evolution algorithm needs to know when the white dwarf was born. This is
communicated by setting epoch (i) = tphys when the star leaves the AGB.
The epoch variable is also used to reset the stellar evolution clock of stars
that lose (or gain) mass during certain phases of evolution (see Hurley, Pols
& Tout 2000; Hurley, Tout & Pols 2002 for more details on the use of epoch).
Note that the units of epoch are Myr whereas tev and tev0 are in N -body
units and the scale-factor TSTAR is required to convert to N -body times to
physical units of Myr.

The next step is to be aware of N -body input variables that are relevant to
stellar evolution. These are read by the routine data.f and are the maximum
stellar mass, body1, the minimum stellar mass, bodyn, the metallicity, zmet,
an offset parameter for the stellar evolution time, epoch0 and the time in-
terval between writing stellar evolution–related output, dtplot. Also related
are the input options kz(19) and kz(20) (actually read in input.f). Setting
kz(19) = 3 is necessary to activate stellar evolution according to SSE. If this is
indicated, data.f calls zcnsts.f with zmet to set the metallicity dependent
coefficients. This only needs to be done once as it is assumed that all stars
are of the same composition. However, if a restart is required, then zcnsts.f
is called once more but from the main routine (nbody4.f or nbody6.f). The
value of kz(20) affects the choice of initial mass function. Options include
the distribution of masses derived by Kroupa, Tout & Gilmore (1993) from
stars in the solar neighborhood (kz(20) = 5) and a power-law mass func-
tion (kz(20) = 0). If the latter is indicated, the exponent alpha is also re-
quired from the input file. The stellar masses, i.e. body(i) for i = 1, N ,
are required to lie between the bounds of bodyn and body1 and are set in
data.f according to kz(20) – it is also possible to read these from a file using
kz(22).

After reading the input file and generating the stellar masses, the N -body
stellar evolution algorithm starts by initialising the stellar variables for each
of the N stars. The routine instar.f is responsible for this process. For each
star i it sets body0(i) = body(i), kstar(i) = 1 or 0, and epoch(i) = 0.0
before calling the star.f and hrdiag.f combination to set radius(i) and
zlmsty(i). The spin angular momentum, spin(i), is also set using the SSE
package (see Hurley, Pols & Tout 2000). For the stellar evolution update times,
the routine sets tev0(i) = 0.0 and tev(i) are initialised by a call to trdot.f
for each star. Note that it is possible to start the stars at an advanced evolution
stage by setting the input parameter epoch0 to some negative value (see the
usage of epoch above). In this case epoch(i) = epoch0.
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Subsequent to initialisation stellar evolution is controlled by the mdot.f
subroutine. Frequent updates are performed in step with the dynamical in-
tegration by means of a variable TMDOT, the minimum of tev(i) for all
i = 1, N . At the end of each integration step (in intgrt.f), a check is made
to determine if the new time exceeds TMDOT. If it does, then mdot.f is called
in order to update each star that has tev(i) less than the current time (more
than one star may be due). Within mdot.f the stellar variables for star i are
updated to an age of tev(i) ∗ TSTAR − epoch(i) by calling the star.f and
hrdiag.f combination. The mass-loss rate, ṁ, for the star is obtained by a call
to mlwind.f, which gives ṁ and the actual mass lost in the interval tev0(i)
→ tev(i) is

Δm = ṁ (tev(i) − tev0(i)) ∗ TSTAR ∗ 1 × 106/ZMBAR (10.2)

in N -body units. If non-zero, this correction is applied to body(i) to update
the stellar mass. If kstar(i) ≤ 2 or kstar(i) = 7, then body0(i) is reset to be
equal to body(i) and epoch(i) is updated to reflect the change in mass. Note
that epoch(i) is also updated when the stellar type changes. Also, if mass
loss occurs, the spin angular momentum of the star is adjusted accordingly –
a call to magbrk.f makes any further adjustments resulting from magnetic
braking. In the case of Δm > 0 the routine fcorr.f is called to perform force
and energy corrections for the mass loss. If a new neutron star or black hole is
detected, this routine calls kick.f to generate the velocity kick arising from
the supernova event and deals with the ramifications of the velocity change.
If the mass loss is substantial (Δm ∗ ZMBAR > 0.1), or a velocity kick has
occurred, it is also necessary to initialise new force polynomials for the star
and its neighbours. This is performed in mdot.f (with calls to the appropriate
subroutines). The update procedure in mdot.f for star i is then completed
by setting tev0(i) = tev(i) and calling trdot.f to set a new tev(i). Before
leaving mdot.f, and after dealing with each star that is due, TMDOT is updated
to the new minimum in the tev array.

Output of the stellar evolution variables is performed by the routine
hrplot.f, which is called from output.f at intervals of dtplot. Note that
dtplot must be greater than or equal to deltat – the time interval in N -body
units for major output – and ideally the two input variables should commen-
surate. A call to hrplot.f creates a snapshot of the model stars at the cur-
rent time. This involves two output files: fort.83 contains a line for each
single star and fort.82 contains a line for each binary. These files provide
the necessary information for generating descriptions of the model in the
form of colour-magnitude diagrams, radial profiles and mass functions, for
example.

The possibility of stellar collisions has been mentioned and the N -body
codes allow for such events. Direct hyperbolic collisions between stars are
rare in the cluster simulations for which nbody4 and nbody6 have typically
been used. Rather, two stars in a close gravitational encounter more likely
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form a binary and this may be followed by a merging of the two stars. As
such, a discussion of how these events are dealt with falls more naturally
under the banner of binary evolution and will be described in Chap. 12.
Here it suffices to say that collisions of all types (eccentric, parabolic or
hyperbolic) are processed by the routine cmbody.f, which calls mix.f if
two stars are to merge. The routine mix.f determines the nature of the
merger product and initialises its stellar variables through calls to gntage.f
and hrdiag.f (see also Hurley, Tout & Pols 2002 for more details of this
procedure).

The interested reader may find Hurley et al. (2001) and Aarseth (2003,
p. 279) useful for additional discussions regarding the implementation of stel-
lar evolution in N -body codes. To complement these discussions, the material
in this section is rounded off by making the user aware of SSE parameters that
are hardwired, so to speak, into various N -body routines. For example, the
parameter η appears in the Reimers mass-loss formula in mlwind.f – in the
stand-alone SSE package this is an input parameter, but in nbody4/6 it is
set in the header of the subroutine. The same goes for the maximum neutron
star mass, which is set in the header of hrdiag.f rather than appearing as
an input variable. There may be occasions when the user would wish to vary
these parameters, and this requires an edit of the relevant file and recompiling
the code.

10.5 Some Results

The stellar evolution capability in nbody4 and nbody6 has been used to
good effect to produce realistic models of star clusters (Baumgardt & Makino
2003, for example). The results of such endeavours are presented in Chap. 14.
Given that the option to use metallicity as a free parameter is a unique feature
that SSE has added to the N -body codes, this section briefly highlights some
results relating to the models of varying metallicity.

In Hurley et al. (2004) a series of nbody4 simulations was presented in
order to investigate the effect of metallicity on the evolution of open clusters.
Each simulation started with 30 000 single stars. Figure 10.1 shows CMD
snapshots at four times for one of these simulations at solar metallicity. This
was constructed using the fort.83 output file. Note that stellar evolution
not only affects the distribution of stars in the nuclear burning phases as the
cluster evolves but also affects the locus of the white dwarf stars. To illustrate
how metallicity affects the CMD appearance, Fig. 10.2 shows the snapshots
of four models at the same age but with different metallicities.

The models of Hurley et al. (2004) showed that clusters with low-Z stars
experienced more mass loss from stellar evolution over the first 5 000Myr
of evolution compared to clusters of solar metallicity. This lead to increased
expansion of the cluster and a decreased stellar mass range with a knock-on
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Fig. 10.1. Colour-magnitude diagram showing four N -body isochrones. Data
are taken from a Z = 0.02 NBODY4 simulation that started with 30 000 sin-
gle stars. Shown are stars in the simulation at 500Myr (diamond symbols),
1 000Myr (* symbols), 4 000 Myr (+ symbols) and 9 000 Myr (star symbols).
Stars in the upper-right of the diagram are in normal nuclear burning phases
of evolution (kstar ≤ 6) and stars in the lower-left are white dwarfs. There
are no naked helium stars present. Any neutron stars or black holes are not
shown. The luminosity and effective temperature provided for each star by
SSE have been converted to magnitude and colour with the bolometric correc-
tions given by the models of Kurucz (1992) and, in the case of white dwarfs,
Bergeron, Wesemael & Beauchamp (1995)

effect of a delay in the onset of core-collapse and binary formation. Overall,
this means that low-Z clusters have extended lifetimes. Models with low-Z
also produced many more double-WD binaries. This is a result of shorter
main-sequence lifetimes and greater AGB core-masses producing more WDs,
and more massive WDs, in comparison to high-Z models of the same age.
This is a direct illustration of the interaction between stellar and dynamical
evolution within the star cluster environment (see Hurley et al. 2004 for more
details).

The focus so far has been on models of single stars – in Chap. 11 we shall
begin to discuss the intricacies of binary evolution. This will be followed in
Chap. 12 by details of the binary evolution algorithm used in nbody4 and
nbody6.
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Fig. 10.2. Colour-magnitude diagram showing N -body isochrones at 4 000 Myr
for simulations of different metallicity. Shown are stars with Z = 0.03 (* symbols),
Z = 0.02 (+ symbols), Z = 0.001 (diamond symbols) and Z = 0.0001 (star symbols).
Data are from NBODY4 simulations begun with 30 000 single stars. The simulations
are described in Hurley et al. (2004). Only stars with kstar ≤ 6 are shown
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In clusters there are both primordial binary stars and binaries created by
dynamical interactions. Occasionally, a new binary system can be formed
(Fabian, Pringle & Rees 1975) but more often new systems are the result
of exchanges. In Chap. 12 Hurley describes an algorithm for including the
interaction of the components of a binary star in N -body simulations. In this
chapter we investigate the underlying physics and note that, though we have
a good qualitative idea of what goes on, there is still much to be determined
fully quantitatively.

Double stars have been known since ancient times and were referred to
in written records as early as Ptolemy. But the concept of a binary star as a
gravitationally bound entity did not exist before the late eighteenth century.
The Revd. John Michell (Michell 1767) showed statistically that not all double
stars could be chance superpositions on the sky. He concluded that “[Double
Stars] were brought together by their mutual gravitation, or some other law
or by the appointment of the Creator.” This statement sums up well our
understanding of the formation of binary stars, the physics of which still
eludes us. At the time Herschel disagreed with Michell’s deductions because
he wanted to use stars as standard candles to map the structure of the Milky
Way. If the two very different components of a double star were actually at the
same distance, such a mapping would be impossible. He eventually acquiesced
and himself introduced the term “binary star” in 1803 (Herschel 1803).

Binary stars are common and consequently perhaps represent the normal
formation mode. The ratio of single (or unresolved) systems to binary to triple
or higher multiple systems is two to five to two to one. As a requirement for
the dynamical stability of a system, higher multiples must be hierarchical
and can be considered as a sequence of binary stars within binary stars. For
instance, a quadruple system (Fig. 11.1) can take essentially two forms. Either
they are two pairs of stars both orbiting one another or a very close binary
in a wider orbit with a third star and then this triple system in a yet wider
orbit with the fourth star. Typically, the separations of nested pairs must be
a factor of four or more smaller for long-term stability. Though no multiple
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a > 4 aa > 4

a > 4 , 4

Fig. 11.1. Two possible configurations of quadruple systems with long lifetimes.
The convention of labelling the stars in a binary as A and B is extended through the
hierarchy. Separations of binary systems within the hierarchy must be typically a
factor four or more larger when moving from one level up to the next for long-term
survival

system is indefinitely stable, many can be expected to survive the current age
of the Universe (Chap. 3).

11.1 Orbits

The orbits of binary stars (Fig. 11.2) obey a form of Kepler’s laws generalised
to the case where both stars have similar masses. First, the orbits are conic
sections and bound orbits are ellipses. The diagram shows the semi-major axis
a, the semi-minor axis b and the semi-latus rectum l. These are related to the
eccentricity e by

l = a(1 − e2) (11.1)

and

e2 = 1 − b2

a2
. (11.2)

A general point on the ellipse is given parametrically by

r =
l

1 + e cos θ
, (11.3)

where r is the distance from the primary focus F and θ is the angle from the
semi-major axis to the line joining the F to P . Secondly the line connecting
the two bodies sweeps out equal areas in equal times. If one body is considered
fixed at F while the other orbits at P , this is equivalent to
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a

F′

b l
r

P

F

θ

Fig. 11.2. Stars in a bound binary follow elliptical orbits. One star is at the focus
F and the other orbits at P around the ellipse

1
2
r2θ̇ =

πa2(1 − e2)1/2

P
, (11.4)

where the numerator is the area of the ellipse and the denominator P is the
period of the binary, the time taken for a complete orbit. This follows from
the conservation of angular momentum. Third the period and separation are
related by

(
P

2π

)2

=
a3

G(M1 +M2)
, (11.5)

where G is Newton’s gravitational constant and M1 and M2 are the masses
of the two stars.

Each of these laws is a consequence of Newton’s laws of motion and his
law of gravity. Both stars orbit the centre of mass in ellipses and both feel a
centrally directed force so angular momentum is conserved. Again with r the
instantaneous separation, we have

r2θ̇ = h =
MJ

M1M2
= const, (11.6)

where M = M1 + M2 is the total mass, J is the total angular momentum of
the system and h is the specific angular momentum per unit reduced mass.
Solving the equations of motion we find that

l =
h2

GM
(11.7)
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so that conservation of angular momentum fixes the semi-latus rectum of the
orbit. Similarly we find the total energy, kinetic plus potential, to be

E = −GM1M2

2a
(11.8)

so that the energy determines the semi-major axis and thence the period of
the system.

11.2 Tides

Though angular momentum can be lost in stellar winds and gravitational ra-
diation, let us first consider the case when the total orbital angular momentum
is conserved. Because the stars are luminous they can radiate orbital energy if
it is converted to heat by tides or any other process. We may write the energy
in terms of the angular momentum and eccentricity as

E = −GM1M2

2h2
GM(1 − e2) (11.9)

from which we can see that
(
∂E

∂e

)

J

∝ 2e and
(
∂2E

∂e2

)

J

> 0 at e = 0. (11.10)

Thus a circular orbit is the most stable configuration for a given angular
momentum.

11.2.1 Tidal Forces

So far we have considered both stars as point masses. This is a good approx-
imation when they are well separated but when they are closer the finite size
of the stars becomes important and tidal interactions and eventually mass
transfer occur between the two. Let us assume that star 2 is sufficiently small
to still be considered a point mass and let star 1 have a radius R (Fig. 11.3).
The potential at a point P , a distance r from the centre of star 1 along a line
at an angle θ to the line joining the centres of the two stars and a distance r′

from star 2, owing to star 2, can be expanded as

Φ2 = −GM2

r′
=

−GM2√
a2 + r2 − 2ar cos θ

= −GM2

a

∞∑

n=0

( r

a

)n

Pn(cos θ), (11.11)

where Pn is the nth Legendre polynomial. The force on material in star 1 is
−∇Φ2. The n = 1 term balances the overall orbital motion. Of most interest
for the evolution of the system is the n = 2 term because it is the largest
that leads to both transfer of angular momentum between star 1 and the
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Fig. 11.3. The tidal potential of star 2 distorts star 1. If, as here, the star is spinning
faster than the orbit (Ω > ω), viscosity drags the tidal bulges ahead of the orbit and
dissipates energy. The force between star 2 and the two bulges provides a torque
that transfers angular momentum from star 1 to the orbit

orbit and dissipation of energy. Star 1 is distorted as illustrated by the dashed
curve in Fig. 11.3. If the star is not rotating synchronously with the orbit, the
distortion is dragged around it. If the star is spinning more slowly, viscosity
leads to a lag, of angle −δ, so that the tidal bulges lag behind the line joining
the stars. If the star is spinning faster than the orbit, the companion lags
behind the bulges. The gravitational force between the two bulges and star 2
provides a torque that tends to synchronize the stellar spin and the orbit. At
the same time, energy dissipation circularises the orbit. Tides also align the
spin axes with the orbital axis (Hut 1981).

The synchronous state is not always stable (Hut 1980). Transfer of angular
momentum from the orbit to a star increases both the spin of the star and
the orbital angular velocity because the orbital angular momentum

Jorb ∝ a2ω ∝ ω−1/3, (11.12)

in a circular orbit with angular velocity ω. If there is insufficient total angular
momentum in the system, the stars end up spiralling together. This is the
expected fate of contact binary stars and some planetary systems though the
process can take a very long time (Rasio, Tout & Livio 1996).

For a typical system in which the extended star, star 1, is convective, with
mass ratio q = M1/M2, separation a and radius of the largest star (star 1
here) R, the circularisation time

τcirc ≈
2q2

1 + q

( a

R

)8

yr. (11.13)

We shall see in the next section that much more drastic interaction begins
when R = RL ≈ 1

3a. At this point τcirc ≈ 2,000 yr. Even when R = 1
2RL,

τcirc ≈ 6× 105 yr which is still much less than the nuclear timescale for stellar
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evolution that ranges from 1010 yr for a 1M� star on the main sequence to
106 yr for a massive giant. Synchronization times are even shorter,

τsync ≈ q2
( a

R

)6

yr (11.14)

or 300 yr for R ≈ RL and 2 × 104 yr for R ≈ 1
2RL.

11.3 Mass Transfer

When the two stars are very close and R ≈ a, we can no longer ignore the
higher terms in the expansion of the tidal potential. We shall begin the analysis
again and make use of the fact that by the time the radius of either star gets
large enough, tides will have already circularised the orbit and synchronized
the spin of the star. We can therefore work in a frame rotating at Ω as
illustrated in Fig. 11.4. Let all the material be stationary except for a test
particle at P. Then in an inertial frame the velocity of P is

v = ṙ + Ω × r (11.15)

and its acceleration is

a = r̈ + 2Ω × ṙ + Ω × (Ω × r), (11.16)

where the first term may be familiar as the Coriolis force and the second as the
centrifugal. We can then apply the Euler momentum equation in the inertial
frame

ρa = −∇P − ρ∇φG, (11.17)

2M
1M

2M a_____

M
a

1 
 = 

a

P

x

y

C of M

r
.

r

Fig. 11.4. Coordinates rotating with the binary system centred on its centre of
mass with the z-axis perpendicular to the orbital plane
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where ρ is the density, P is the pressure,

∇2φG = 4πGρ (11.18)

and φG is the gravitational potential. In corotation ṙ and r̈ vanish and aligning
the z-axis with Ω we may write

Ω × (Ω × r) = −∇φΩ, (11.19)

with
φΩ = −1

2
Ω2s2, (11.20)

where s is the distance from the z-axis. Thus the Euler equation reduces to

1
ρ
∇P + ∇Φ = 0, (11.21)

with Φ = φG +φΩ. So surfaces of constant pressure are surfaces of constant Φ.
In particular the surface of the star, if defined as P = 0, is a surface of constant
Φ. Stars are centrally condensed, so to a good approximation φG is just the
gravitational potential of two point masses at the centres of the stars and, in
Cartesian coordinates with star 1 at the origin and star 2 at (a, 0, 0), we find

Φ =
−GM1√

x2 + y2 + z2
+

−GM2√
(x− a)2 + y2 + z2

− 1
2
GM

a3

[(

x− a

1 + q

)2

+ y2

]

,

(11.22)

which is just a function of the mass ratio q = M1/M2, GM and a. Moreover, if
we scale all lengths by the separation x → x/a, the shape of the equipotential
surfaces is a function of q only. We plot them for q = 2 in Fig. 11.5. Corotating
material in hydrostatic equilibrium fills up to an equipotential surface. Thus
when the radii are small compared to a, the surface equipotentials are spheres.
Far from the binary surfaces are again spheres. Of interest to us are the two
innermost critical surfaces on which the lines meet at stationary Lagrangian
points. Moving outwards from the centres of the stars the first, meeting at
the inner Lagrangian point L1, determines when material is more attracted
to its companion than to the star itself. The second opens to the right at the
L2 point and determines the maximum size of a joint star, or contact binary,
around the two orbiting masses. The three other stationary points are also
shown but are not of interest to us now because, beyond the surface through
the L2 point, there is nothing to keep the material corotating and (3.1) is no
longer valid.

Figure 11.6 shows the value of the potential along the x-axis and illustrates
how stars fill their equipotential surfaces to form three different classes of
binary star. In a wide binary system both stars have radii small compared to
the separation and the system is said to be detached. As either star grows,
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x / a

y 
/ a

q

Fig. 11.5. Equipotential lines in the x−y plane. Solid lines pass through Lagrangian
points where ∇Φ = 0

it is gradually distorted until it fills the critical potential surface that crosses
at the inner Lagrangian L1 point between the two stars. This equipotential
around the star is its Roche lobe. If the star grows any larger, material at L1 is
more attracted to its companion than to itself and the material can flow from
it to the other star. This is known as Roche lobe overflow and the system
is said to be semi-detached. Algols (Sect. 11.5.1) and cataclysmic variable
stars (Sect. 11.5.3) are in this state. If the second star expands so that it too
would overfill its Roche lobe, the two stars can exist in equilibrium in contact.
Such systems appear to be common but do not last long. Material and heat
are transferred between the two until the mass ratio becomes large and tidal
instability shrinks the orbit and merges the two stars.

Even the surface through the L1 point is almost spherical. When the mass
ratio q = 1, the difference in extent between the x and z directions is only
5% of the diameter and this rises to only 10% when q = 10. We define the
Roche lobe radius RL to be the radius of a sphere with the same volume as
the Roche lobe

VL =
4
3
R3

L. (11.23)
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Fig. 11.6. The potential along the x-axis in Fig. 11.5. Three binary star configura-
tions are shown

The volume can be evaluated numerically and various simple fits to RL have
been deduced. Eggleton (1983) fitted the Roche lobe radius of star 1 by

RL

a
=

0.49q2/3

0.6q2/3 + loge(1 + q1/3)
. (11.24)

This is accurate to better than 1% over the whole range 0 < q < ∞. It is the
preferred form for numerical work but for analytic work a formula deduced
by Paczyński (1971),

RL

a
= 0.462

(
M1

M

) 1
3

, (11.25)

which is accurate to better than 3% for 0 < q < 0.8, is much more useful.
The rate of flow through the L1 point is a rapidly rising function of the

amount by which the star overfills its Roche lobe ΔR = R − RL. So, as long
as the rate at which the star expands, or the Roche lobe shrinks, is long
compared with the dynamical timescale, on which hydrostatic equilibrium is
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regained, we can expect the mass transfer rate to adjust to maintain

R ≈ RL and Ṙ ≈ ṘL. (11.26)

If this timescale is much less, we can expect ΔR and consequently Ṁ to
increase on a dynamical timescale. We consider the consequences of such un-
stable mass transfer in Sect. 11.5.4 but first we examine under what conditions
mass transfer is stable.

11.3.1 Stability of Mass Transfer

To examine the stability of mass transfer we follow Webbink (1985) and define
three derivatives of radii with respect to the mass of the lobe-filling star. The
first is the rate of change of the Roche lobe radius RL for conservative mass
transfer in which the angular momentum of the system J and the total mass
M are conserved. Any material lost by star 1 is accreted by star 2 so that

ζL =
(
∂ logRL1

∂ logM1

)

M,J

. (11.27)

This can be approximated by ζL = 2.13q − 1.67 (Eggleton 2006) and we see
that it is positive for M1 > 0.78M2 so that, in this case, the Roche lobe
shrinks in response to mass transfer from star 1 to star 2 and otherwise it
expands. The initial response of the star to mass loss is adiabatic as it regains
hydrostatic equilibrium and loses thermal equilibrium in the process. So we
define a second derivate at constant entropy s and composition of each isotope
Xi throughout the star

ζad =
(
∂ logR1

∂ logM1

)

s,Xi

. (11.28)

For stars with radiative envelopes ζad > 0 so they shrink on mass loss, while
for stars with convective envelopes ζad < 0 and they expand on mass loss. On
a thermal timescale the star regains full equilibrium at its new mass but still
with constant composition. A third derivative,

ζeq =
(
∂ logR1

∂ logM1

)

Xi

, (11.29)

describes the rate of change of radius with mass in equilibrium. For main-
sequence stars ζeq > 0 typically, while for red giants and stars crossing the
Hertzsprung gap ζeq < 0.

The rate at which mass transfer proceeds depends on the relative values
of these derivatives. If ζL > ζad, then the Roche lobe shrinks faster than the
radius of the star in direct response to mass transfer. So ΔR increases and
consequently Ṁ increases rapidly. There is positive feedback and the mass
transfer is unstable,
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∣
∣
∣
∣
M1

Ṁ1

∣
∣
∣
∣ → τdyn ≈ 10 − 100 yr (11.30)

and mass transfer proceeds on a dynamical timescale. Star 2 often cannot
accrete the material at such a high rate. Instead, it expands itself and the
transferred material ends up in a common envelope around the two stars. We
shall discuss this in detail in Sect. 11.5.4. This is typically the outcome when a
giant fills its Roche lobe when in orbit with a less massive companion because
the giant expands while its Roche lobe is shrinking. Positive feedback drives
the mass transfer up to the dynamical rate.

If ζL < ζad but ζL > ζeq then the star shrinks in its immediate response
to mass transfer but then expands on its thermal timescale τth and

∣
∣
∣
∣
M1

Ṁ1

∣
∣
∣
∣ → τth ≈ 105 − 106 yr. (11.31)

Mass transfer proceeds on a thermal timescale. This is the case when a sub-
giant in the Hertzsprung gap with a radiative or thin convective envelope fills
its Roche lobe.

If both ζad > ζL and ζeq > ζL, the star shrinks in response to mass transfer
and does not expand again to fill its Roche lobe until driven to, either by its
own nuclear evolution or until some angular momentum loss mechanism causes
the orbit to shrink sufficiently. Either

∣
∣
∣
∣
M1

Ṁ1

∣
∣
∣
∣ → τnuc ≈ 107 − 109 yr, (11.32)

the case for main-sequence stars or red giants in present-day Algols (see
Sect. 11.5.1), or ∣

∣
∣
∣
M1

Ṁ1

∣
∣
∣
∣ → τJ, (11.33)

the timescale on which angular momentum is lost from the system. This is
the case for cataclysmic variables that form the subject of Sect. 11.5.3.

11.4 Period Evolution

When the angular momentum of the component stars is negligible compared
to that of their orbit, we can derive simple formulae for how the orbit evolves
with mass loss and mass transfer. We allow a wind from star 1 that escapes
from the system and mass transfer from star 1 to star 2 so that −Ṁ1 is the
mass loss rate from star 1, Ṁ2 is the rate of accretion by star 2, the mass
transfer rate, and −Ṁ is the rate of mass loss from the system, the wind from
star 1. Then

− Ṁ1 = −Ṁ + Ṁ2, (11.34)
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with Ṁ and Ṁ1 ≤ 0 and Ṁ2 ≥ 0. The wind from star 1 carries off angular
momentum intrinsic to the orbit of the star so that the rate of change of
angular momentum of the orbit is

J̇ = Ṁa2
1Ω. (11.35)

We recall that
J =

M1M2

M
a2Ω (11.36)

so that we can differentiate log J to find

J̇

J
=

Ṁ1

M1
+
Ṁ2

M2
− Ṁ

M
+ 2

ȧ

a
+

Ω̇
Ω

=
M

M1M2

(
M2

M

)2

Ṁ =
M2

M1

Ṁ

M
, (11.37)

from (11.35). Differentiating Kepler’s third law we find

2
Ṗ

P
= −2

Ω̇
Ω

= 3
ȧ

a
− Ṁ

M
(11.38)

and combining these gives us

M2

M1

Ṁ

M
=

Ṁ1

M1
+
Ṁ2

M2
− 1

3
Ṁ

M
+

1
3
Ṗ

P
. (11.39)

When there is no mass transfer but mass loss in a wind, Ṁ2 = 0 and Ṁ1 = Ṁ
so that

Ṗ

P
= −2

Ṁ

M
. (11.40)

We can integrate this to give P 2M = const or, with (11.38), aM = const.
The period and separation increase as mass is lost. Indeed, as the Sun loses
mass, so the planets of the solar system will drift further away from it.

When there is mass transfer but no mass lost from the system Ṁ = 0 and
J̇ = 0 so that

Ṗ

P
= −3

Ṁ1

M1
− 3

Ṁ2

M2
. (11.41)

This can be integrated to give P (M1M2)3 = const or a(M1M2)2 = const.
The period and separation decrease while mass is transferred from the more
massive to the less massive component, reach minima when the masses are
equal and then increase as mass is transferred from the less massive to the
more massive component.

11.5 Actual Types

We have described the basic physics of binary stars and their interactions.
Coupling this with stellar evolution leads to a veritable zoo of different types
of binary star, as described by Eggleton (1985). Observations do overlap with
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what we expect but often require the introduction of new physical processes
such as common envelope evolution (Sect. 11.5.4) that are not fully under-
stood. We shall illustrate with just three examples. The Algols as the proto-
types, the cataclysmic variables as those studied in most detail and the type Ia
supernovae that have recently been used as standard candles to measure the
structure and evolution of the Universe.

11.5.1 Algols

As one of the brightest stars in the northern hemisphere, Algol or β Persei
has been known for a long time. It is an eclipsing SB2 and so yields a great
deal of information about its current state. Its variability was first definitely
recorded by Montanari (1671) in Bologna but the name Algol suggests that it
may have been recognised much earlier. Algol is derived from the Arabian Al
Ghūl, which has been variously translated as demon or changing spirit (Kopal
1959). However, Allen (1899) felt it is more likely that the name is derived
from Ptolemy who referred to it as the brightest star in the Gorgon’s head,
a constellation recognised by the Greeks at the time and indeed generally
until quite recently (Goodricke 1783). The Hebrews called it Rōsh-ha-Satan
or Satan’s head and the Chinese Tseih She or the piled up corpses. Whether
these names reflect the variability or not must be left to our imaginations
because no actual record has been found.

Its eclipses were not noted for over a century until John Goodricke (1783)
sent a short letter to the Royal Society describing how he had spotted a
periodicity in the light variations of Algol. He and his friend, Edward Pigott,
had by then already obtained a fairly accurate estimate of the period of 2 days
and 21 h. Goodricke in a short paragraph at the end of his letter went on to
suggest that the cause of the variation might be either a dark object orbiting
and eclipsing the star or a dark spot on its surface. Confirmation of his first
hypothesis did not come for yet another century when Vogel (1890) observed
radial velocity shifts in the spectrum of Algol and found the positions of
minimum light to correspond to the conjunctions of the eclipse model.

Observations improved with time giving better photometric and spectro-
scopic measurements of Algol and a number of similar systems. It seems that
it had been apparent that something was not quite right with Algol for some
time before Hoyle (1955) recorded what he described as the Algol Paradox.
From the shapes of the eclipses it was clear that the fainter star was larger.
Such a situation was thought not to be possible according to the theory of
stellar evolution. If both stars were on the main sequence then the brighter
would be larger. In fact, the fainter could only be larger if it had evolved
off the main sequence and indeed Parenago (1950) had already claimed that
the fainter components of Algols were in many cases sub-giants. Hoyle argued
that, although it would be possible to pick the two stars from the H-R di-
agram, one on the main sequence and the other a much older sub-giant, all
reasonable theories of the formation of binary stars suggested that the two
components would have formed at the same time and would be of the same
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age now. Thus he had identified the paradox without the need to introduce
the masses of the stars directly and went on to explain it successfully in terms
of the initially brighter star evolving to such a size that its fainter companion
gobbled up matter from its surface. This companion could then move up the
main sequence and become the brighter of the two. In clusters such stars could
later appear as blue stragglers (Sandage 1953).

At the same time, Crawford (1955) was also solving the same paradox
though more specifically in terms of the limitations placed on the mass ratios
by the spectroscopically determined mass functions and the assumption that
the brighter component does in fact lie on the main sequence. Struve (1948)
had already pointed out that these mass functions are low. Crawford also
introduced the concept of the giant filling its Roche lobe. In fact, Walter
(1931) had pointed out that the cool stars in Algols are close to the limit of
dynamical stability but this had gone largely unnoticed.

This semi-detached nature of Algols provided mutual support for the hy-
pothesis formulated by Struve (1949) that the existence of gaseous streams
between the two stars in Algols could account for an asymmetry in the ra-
dial velocity curve. Although the photometric light curve of U Cephei showed
symmetric eclipses, the radial velocity curve is asymmetric. Struve explained
this in terms of the spectrum of a gaseous stream, moving faster than the
two stars, superimposed on the symmetric curve of the star. Evidence had
also been provided by Wood (1950) who had found that binaries with period
fluctuations almost always have one star filling its Roche lobe.

With a fairly definite theory and the dawn of numerical stellar evolu-
tion, the stage was set for the construction of theoretical models of these
semi-detached systems. The first step was taken by Morton (1960) who, con-
centrating on the initially more massive star, examined the process of mass
transfer. He pointed out that since all observed Algols have the sub-giant
component already less massive, the initial rate of mass transfer must have
been much faster than that taking place now. It must have been sufficiently
fast to make it unusual to observe a system in a state where the primary is
still the more massive.

11.5.2 Critical Mass Ratio

A simple calculation reveals why. Let the mass-losing giant be star 1. Its radius

R1 ≈ f(L)M−0.27
1 , (11.42)

where f is a function of its luminosty L, which does not vary much with mass
loss. The fully convective giant envelope is isentropic so that ζad ≈ ζeq and,
for timescales short compared with the nuclear evolution timescale on which
L varies,

Ṙ1

R1
= −0.27

Ṁ1

M1
. (11.43)



11 Binary Stars 311

For stable mass transfer we must have negative feedback

Ṙ < ṘL when R1 = RL, (11.44)

because otherwise the process of mass transfer would mean that the star
overfills its Roche lobe even more and the rate of overflow would increase.

We can differentiate formula (11.25) which, recall, is valid for q < 0.8, to
find

ṘL

RL
=

1
3
Ṁ1

M1
− 1

3
Ṁ

M
+
ȧ

a
. (11.45)

Then, assuming conservative mass transfer (Ṁ = 0 and J̇ = 0), we require

− 0.27
Ṁ1

M1
<

(
1

3M1
− 2(M2 −M1)

M1M2

)

Ṁ1. (11.46)

But Ṁ1 < 0 so

M1 < 0.7M2 or q < qcrit = 0.7. (11.47)

Over the decade following Morton’s work, detailed models were made by
many independent workers: Paczyński (1966), Kippenhahn & Wiegert (1967)
and Plavec et al. (1968) all confirmed Morton’s results. Kippenhahn and
Weigert introduced the nomenclature of case A to indicate mass transfer be-
fore the exhaustion of central hydrogen burning and case B for mass transfer
afterwards, when the star has evolved off the main sequence. In all of these
models conservative mass transfer (all the matter lost by the primary being
accreted by the secondary) was assumed but Paczyński & Zió�lkowski (1967)
showed that the resulting Algol systems are more realistic if half the mass lost
by the primary is actually lost from the system. In order to avoid dynamical
mass transfer, all Algols must have begun mass transfer before the most mas-
sive star has evolved on to the giant branch unless it has suffered sufficient
mass loss that q < qcrit ≈ 0.7 and the Roche lobe expands faster than the star
(Tout & Eggleton 1988).

11.5.3 Cataclysmic Variables

Cataclysmic variables are very close binary stars in which the primary com-
ponent is a white dwarf, which is accreting material transferred from its
Roche-lobe-filling companion. Figure 11.7 illustrates the basic components.
The companion to the white dwarf is always less massive, often substantially,
and is typically a low-mass main-sequence star for which the Roche-filling
state dictates an orbital period of a few hours and a separation of about a
solar radius. In a very few systems the secondary star can be slightly evolved.
For example GK Per, the widest system classified as a cataclysmic variable,
has an orbital period of 47 h and its white dwarf has a subgiant companion.
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Cataclysmic Variable Star

Accretion Disc

White Dwarf

Hot Spot

Accretion Stream

Secondary Star

Fig. 11.7. A schematic diagram of a cataclysmic variable with the major observable
components marked. According to general practice, the accreting white dwarf is
star 1 and the Roche lobe filling companion is star 2

The nuclear, or in some cases mass-loss, timescales of evolved companions
can be relatively short and their nature is therefore fundamentally different
from those systems with unevolved low-mass secondaries. Most importantly
the mass transfer rates are higher. These systems, particularly those with very
large red or supergiant secondaries, are classified as symbiotic stars. At the
other extreme, the companion can be another white dwarf of lower mass than
the primary. AM CVn is the prototype of this class of cataclysmic variables
and has a period of 89min.

In addition to the two stars a third component, an accretion disc, is impor-
tant and often dominates the light from the cataclysmic variable. It is formed
because the material overflowing from the companion at the inner Lagrangian
point L1 has too much angular momentum to fall directly on to the white
dwarf. Viscous dissipation allows the slow infall of the majority of the matter
through the disc while angular momentum is carried outwards until it can
be tidally returned to the orbit. Many cataclysmic variables are observation-
ally very clean systems in which the light variations and spectra of each of
the three main components can be separated out. Often the signature of the
high-velocity accretion stream and the hot spot where it impacts the edge of
the disc can also be identified. An excellent, detailed and very readable review
of the observations from early times forms a substantial part of the book by
Warner (1995) to which the interested reader is encouraged to turn.
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Two instabilities gave cataclysmic variables their name and were respon-
sible for their early observation. The first is the classical nova. Hydrogen-rich
material transferred to the white dwarf from its companion builds up in a
degenerate layer on the surface. When the base of this layer becomes dense
enough and hot enough, the hydrogen ignites in a thermal nuclear runaway
that leads to a large increase in brightness and probably the ejection of most
of the accreted material. The second is an instability in the accretion disc.
Under some conditions material can accumulate in the disc and fall through
in bursts. The quasiperiodic increase in brightness of the disc makes these
visible as dwarf novae. There are yet other systems that have never displayed
either of these phenomena and others that are dominated by magnetic fields.

Typically, the nuclear timescale on which the donor star evolves, τN >
1011 yr so that evolution cannot be the driving force behind the mass transfer.
Rather this is direct angular momentum loss. In the closest systems, typically
those with P < 3 h, it is achieved in gravitational radiation (Peters & Mathews
1963) at a fractional rate

J̇GR

J
= −32G3

5c5
M1M2(M1 +M2)

a4
. (11.48)

In longer period systems this is too weak and the most likely mechanism is a
process of magnetic braking (Fig. 11.8). A very mild wind carrying off mass
at |Ṁ | < |Ṁ1|, the mass transfer rate, can be dragged round by the star out
to large distances beyond the Alfvén radius RA at which the magnetic energy
density equals the specific kinetic energy in the wind,

Dead Zone

Wind Zone

Magnetic Field anchored to Star

Fig. 11.8. A very weak wind can be dragged around by a magnetic field linked to
a star. In dead zones the wind cannot escape but where it can open the field lines
it carries of substantial angular momentum because it effectively corotates with the
star to the Alfvén radius RA
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1
2
v2
w =

B2

2μ0
, (11.49)

where vw is the wind velocity, B is the magnetic field strength and μ0 is the
vacuum permeability. The combined angular momentum loss rate, in the wind
and owing to magnetic torques, is

J̇ = ṀR2
AΩ, (11.50)

where Ω is the spin angular velocity of the star, effectively as if the wind were
corotating to RA (Mestel & Spruit 1987). This can be very effective when
RA � R, which is usually the case when |Ṁ | is small. It is most probably
magnetic braking that is responsible for bringing cataclysmic variables into
the semidetached state in the first place.

11.5.4 Common Envelope Evolution

The white dwarfs in cataclysmic variables must have originally formed as the
cores of giants, which must have had room to grow to 100 or even 1,000R� be-
fore interaction. However, their orbital separation is now only a few solar radii.
The generally accepted route by which a binary reduces its period is common-
envelope evolution (Paczyński 1976). Following dynamical mass transfer from
the giant, the pair becomes a common-envelope system (Fig. 11.9) in which
the degenerate core of the original giant and the relatively dense red dwarf are
orbiting within the low-density envelope of the giant that now engulfs both
stars. From here on what happens is as much fantasy as fact. By some fric-
tional process the two cores are supposed to spiral together towards the centre
of the envelope. During this process the orbital energy released is transferred
to the envelope which it drives away in a strong wind. Because the orbital
energy of the cores and the binding energy of the envelope are of the same
order, it can be envisaged that in some cases the balance is just such that the
entire envelope is blown away when the cores reach a separation of a few solar
radii. If more energy is transferred, the envelope is lost while the orbit is still
quite wide. If less energy is transferred, the cores coalesce before the envelope
is lost. In practice, coalescence most likely occurs when the red dwarf reaches
a depth in the envelope where it has comparable density with the envelope or
when it is tidally disrupted by the white dwarf.

Webbink (1984) defined a parameter αCE to be the fraction of the or-
bital energy released, during the spiralling-in, which goes into driving away
the envelope. Knowing αCE and the binding energy of the envelope, we can
calculate the final orbital separation from the initial. Note that the binding
energy of the envelope is calculated differently by different authors. The most
significant discrepancy is whether we use the binding energy of the single-star
giant envelope before the common envelope forms (Webbink 1984) or that
of the common envelope itself on the assumption that it has swollen up to
the size of the orbit (Iben & Tutukov 1984). The value of αCE is expected
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Cores Spiral Together

Envelope Lost Coalescence

Magnetic Braking
Gravitational

Radiation

Rapidly Spinning GiantClose Binary in Planetary Nebula

Normal Giant

10  yr
4

Cataclysmic Variable

Fig. 11.9. Common-envelope evolution. After dynamical mass transfer from a giant,
a common envelope enshrouds the relatively dense companion and the core of the
original giant. These two spiral together as their orbital energy is transferred to
the envelope until either the entire envelope is lost or they coalesce. In the former
case a close white-dwarf and main-sequence binary is left, initially as the core of a
planetary nebula. Magnetic braking or gravitational radiation may shrink the orbit
and create a cataclysmic variable. Coalescence results in a rapidly rotating giant,
which will very quickly spin down by magnetic braking

to be less than one because at least part of the released energy should be
radiated away. However, population synthesis models that recreate sufficient
numbers of cataclysmic variables and other close systems, such as X-ray bi-
naries and the progenitors of SNe Ia, indicate that large values of αCE are
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required. Typically, about three times the energy released seems to be needed
(Hurley, Tout & Pols 2002).

Sources of energy other than the orbital energy are available but it is not
yet established exactly how they might be tapped. There is always ongoing
nuclear burning around the giant’s core and indeed this energy is important
if it is assumed that the common envelope expands to fill the orbit as it forms
and so is included surreptitiously in the formalism of Iben & Tutukov but not
in that of Webbink. In general, this requires that the timescale for common-
envelope evolution be comparable with or longer than the thermal timescale
of the envelope so that the nuclearly generated energy is comparable with
the envelope binding energy. It also requires an efficient means of converting
this nuclear luminosity to the kinetic energy of mass loss and avoid radiation.
Han, Podsiadlowski & Eggleton (1994) include the ionization energy in the
binding energy of the envelope. This greatly reduces what is required but to
such an extent that the envelopes of many normal AGB star models are un-
bound. It is also difficult to see how this energy can be tapped in an envelope
that is hot enough to remain fully ionised. Yet another source has been iden-
tified by Ivanova & Podsiadlowski (2001). During the formation of a common
envelope a stream of hydrogen-rich material can penetrate to hot hydrogen-
exhausted regions where rapid non-equilibrium burning takes place. Indeed,
in their models, often enough energy is released to destroy the envelope before
any spiralling of the cores has begun.

11.5.5 Type Ia Supernovae

Luminous SNe Ia are amongst the brightest objects in the Universe and their
use as standard candles by cosmologists has elevated the need to understand
their progenitors. The major energy source of SNe Ia is the decay of 56Ni
to 56Fe and the total energy released in a SN Ia is consistent with the de-
cay of approximately a solar mass of 56Ni. These facts strongly implicate the
thermonuclear explosion of a white dwarf though the actual explosion mech-
anism is not fully understood (Hillebrandt & Niemeyer 2000). White dwarfs
may be divided into three major types: (i) helium white dwarfs, composed
almost entirely of helium, form as the degenerate cores of low-mass red gi-
ants, which lose their hydrogen envelope before helium can ignite; (ii) car-
bon/oxygen white dwarfs, composed of about 20% carbon and 80% oxygen,
form as the cores of asymptotic giant branch stars or naked helium burning
stars that lose their envelopes before carbon ignition; and (iii) oxygen/neon
white dwarfs, composed of heavier combinations of elements, form from gi-
ants that ignite carbon in their cores but still lose their envelopes before the
degenerate centre collapses to a neutron star.

In binary systems, mass transfer can increase the mass of a white dwarf.
Close to the Chandrasekhar mass (MCh ≈ 1.44M�), degeneracy pressure can
no longer support the star that collapses releasing its gravitational energy. The
ONe white dwarfs lose enough energy in neutrinos and collapse sufficiently,
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before oxygen ignites, to avoid explosion (accretion induced collapse, AIC).
The CO white dwarfs, on the other hand, reach temperatures early enough
during collapse (at a mass of 1.38M�) for carbon fusion to set off a ther-
monuclear runaway under degenerate conditions and release enough energy
to create a SN Ia. Accreting He white dwarfs reach sufficiently high temper-
atures to ignite helium at M ≈ 0.7M� � MCh (Woosley, Taam & Weaver
1986). An explosion under these conditions is expected to be quite unlike a
SN Ia.

The process is further complicated by the nature of the accreting material.
If it is hydrogen-rich, accumulation of a layer of only 10−4 M� or so leads to
ignition of hydrogen burning sufficiently violent to eject most, if not all of or
more than, the accreted layer in the novae outbursts of cataclysmic variables.
The white dwarf mass does not significantly increase and ignition of its in-
terior is avoided. However, if the accretion rate is high Ṁ > 10−7 M� yr−1,
hydrogen can burn as it is accreted, bypassing novae explosions (Paczyński
& Żytkow 1978) and allowing the white dwarf mass to grow. Though if it is
not much larger than this, Ṁ > 3 × 10−7 M� yr−1, hydrogen cannot burn
fast enough and accreted material builds up a giant-like envelope around the
core and burning shell that rapidly leads to more drastic interaction with
the companion and the end of the mass transfer episode. Rates in the nar-
row range for steady burning are found only when the companion is in the
short-lived phase of thermal-timescale expansion as it evolves from the end of
the main sequence to the base of the giant branch. Super-soft X-ray sources
(Kahabka & van den Heuvel 1997) are probably in such a state but, without
invoking some special feedback mechanism, such as disc winds (Hachisu, Kato
& Nomoto 1996), cannot be expected to remain in it for very long and white
dwarf masses very rarely increase sufficiently to explode as SNe Ia.

At first sight, a more promising scenario might be mass transfer from
one white dwarf to another. In a very close binary orbit gravitational radia-
tion can drive two white dwarfs together until the less massive fills its Roche
lobe. If both white dwarfs are CO and their combined mass exceeds MCh,
enough mass could be transferred to set off a SN Ia. However, if the mass
ratio Mdonor/Maccretor exceeds 0.628, mass transfer is dynamically unstable
because a white dwarf expands as it loses mass. Based on the calculations at
somewhat lower, steady accretion rates, Nomoto & Iben (1985) have claimed
that the ensuing rapid accretion of material allows carbon to burn in mild shell
flashes, converts the white dwarf to ONe and ultimately leads to AIC and not
a SN Ia. They found a limit of one fifth of the Eddington accretion rate was
necessary to avoid igniting carbon non-degenerately. The Eddington accretion
rate is that rate at which the outward radiation pressure that results from the
energy released as the material falls into the potential well of the star balances
the gravitational attraction on an atom. Even for stable mass transfer driven
by gravitational radiation, this is exceeded. Recently, Martin, Tout & Lesaffre
(2005) have found that the accretion limit for steady accretion is more like
two-fifths of the Eddington rate and further that short periods of accretion at
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much higher rates can be tolerated. They showed that a 1.1M� white dwarf
could accrete all the material from a companion white dwarf of 0.3M� at the
full rate driven by gravitational radiation and still ignite degenerately at the
centre. However, there is no simple way to create a 0.3M� CO white dwarf
and accretion of helium rich material can lead to similar to but more extreme
explosions than novae. We are still searching for the progenitors of SNe Ia
from among the diverse binary systems in the stellar zoo.
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12.1 Introduction

It has long been recognized that binary stars represent a significant and im-
portant population within a star cluster and are present from the time of
formation (Hut et al. 1992). As such, binary stars have been included in N -
body models of star cluster evolution for quite some time (Heggie & Aarseth
1992, for example). However, these early models focused only on the dynami-
cal evolution of binaries – orbital changes resulting from encounters with other
cluster stars. It was not until the emergence of rapid binary evolution algo-
rithms (also called population synthesis codes: Tout et al. 1997; Yungelson
et al. 1995) that facets of internal binary evolution such as mass-transfer were
followed in N -body codes. This chapter provides a description of how binary
evolution is treated in nbody4 and nbody6 and what is included in the al-
gorithm. It follows closely on from the overview of N -body stellar evolution
given in Chap. 10 and the theory of binary stars presented in Chap. 11, so
it is strongly suggested that these are read beforehand. The material in this
chapter does not deal with dynamical considerations, such as the transfor-
mation of the two-body orbital elements to regularized variables for a more
accurate treatment of close encounters, the integration of hierarchical sub-
systems, and gravitational perturbations of binary orbits. These are covered
in Chaps. 1 and 3 as well as comprehensively in Aarseth (2003).

12.2 The BSE Package

The modelling of binary evolution in nbody4 and nbody6 follows closely
the Binary Star Evolution (BSE) algorithm presented in Hurley, Tout & Pols
(2002). Before discussing the implementation of this algorithm in the N -body
codes, it will first be useful to give an overview of what it entails. This will
also serve to give the reader some insight into how a prescription-based bi-
nary evolution code operates. BSE is the binary evolution analogue of the

Hurley, J.R.: N-Body Binary Evolution. Lect. Notes Phys. 760, 321–332 (2008)
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Single Star Evolution (SSE) package described in Chap. 10. The SSE package
is fully incorporated within BSE and provides the underlying stellar evolution
of the binary stars as the orbital characteristics are evolved. Throughout the
description of the binary evolution algorithm given below, references will be
made to SSE subroutines as listed in Table 10.2 of Chap. 10.

The first step in the evolution algorithm is to initialize the binary. This
requires setting the masses of the two stars (which we will call M1 and M2),
an orbital separation (or equivalently an orbital period), and an eccentricity.
In the next section there will be some discussion of how these parameters can
be chosen from appropriate distribution functions, but for now it is assumed
they are simply set to arbitrary values. For the purposes of stellar evolution
the metallicity, Z, is also required, and it is generally assumed that this is
the same for the two stars. Normally, the evolution begins with both stars on
the zero-age main-sequence (ZAMS) and a separation such that the binary is
detached. However, beginning with evolved stars and/or a semi-detached state
is possible. A final consideration for the initialization phase is the spins, or
rotation rates, of the stars. Unless otherwise specified, each star begins with a
ZAMS spin set by SSE according to the ZAMS stellar mass (this is based on a
fit to rotational data of observed main-sequence stars as described in Hurley,
Pols & Tout 2000). Other options, such as starting the stars in co-rotation
with the orbit, i.e. tidally locked, are available.

For the purposes of the algorithm, the evolution of a binary is separated
into two distinct phases:

1. detached evolution if neither star is filling its Roche lobe;
2. roche evolution if one or both of the stars are filling their Roche lobes.

The Roche-lobe radius is calculated using the expression given by Eggleton
(1983), which depends on the mass-ratio of the stars and the orbital sepa-
ration. If the radius of a star exceeds its Roche-lobe radius, it is deemed to
be filling its Roche lobe. In its most basic form the algorithm can be seen as
moving the binary forward in time within the detached phase (according to
some chosen timestep) until one of the stars fills its Roche lobe and is therefore
starting to transfer mass to the companion star. The evolution then switches
to the roche phase, which deals with all facets of the evolution associated with
mass transfer, including contact and common-envelope evolution. This may
once again involve moving the binary forward through a series of timesteps
or the outcome may be decided immediately. Switching between the detached
and roche phases is permitted, as is the possibility of following the evolution
of a single star after a merger event.

Each iteration during a timestep Δt within the detached phase includes
the following steps (taken in turn):

• calculate the stellar wind mass-loss rate from each star (via a call to
mlwind.f) and determine if any of this material is accreted by the com-
panion;
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• calculate the rate of change of the orbital angular momentum and eccen-
tricity owing to stellar wind mass loss and accretion;

• calculate the rate of change of orbital angular momentum and eccentricity
owing to gravitational radiation (only effective for separations less than
10R�);

• calculate the change in the intrinsic spin of each star owing to mass changes
and magnetic braking;

• calculate the rate of change of the spin of each star and the orbital eccen-
tricity owing to tidal interactions between the stars and the orbital motion
(spin-orbit coupling);

• restrict Δt if necessary to ensure that the relative changes in stellar mass,
spin angular momentum owing to magnetic braking, and orbital angular
momentum owing to tides are less than 1%, 3% and 2%, respectively;

• update the mass of each star and, for main-sequence (MS) and sub-giant
stars, adjust the epoch parameter if necessary (see Chap. 10 and Hurley,
Tout & Pols 2002 for usage);

• update the intrinsic spin of each star with a check to ensure that the star
does not exceed its break-up speed;

• update the orbital parameters (angular momentum, separation, period and
eccentricity);

• advance the time by Δt;
• evolve each star to the current time using calls to star.f and hrdiag.f

in order to update the stellar parameters (stellar type, radius, core-mass,
etc.);

• if a supernova has occurred, call kick.f and adjust the orbital parame-
ters accordingly, including a check that the orbit is still bound (the next
iteration is done with Δt = 0);

• check if either star now fills its Roche lobe and switch to the roche phase
if this is true (if the Roche-lobe radius exceeds the stellar radius by more
than 1%, the algorithm interpolates backwards until this condition is met
before switching);

• for an eccentric binary, check if a collision is expected at periastron and
switch to the roche phase if this is true;

• choose a new Δt from the minimum of the current recommended stellar
evolution timestep for each star (based on the stellar type and a require-
ment that the radius changes by less than 10%: see Chap. 10);

• start the next iteration.

Note that if a single star emerges from the roche phase after a coales-
cence/merger of the binary stars, this new star will be evolved within the
detached phase. Likewise, if the binary becomes unbound, the evolution of
two single stars can be followed in the detached phase with the irrelevant
steps, such as tidal evolution and mass accretion, skipped.

The general steps involved with each iteration of the roche phase are as
follows:
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• calculate the dynamical timescale for the primary star (the star filling its
Roche lobe);

• determine if mass-transfer occurs on a dynamical timescale (dependent
on the stellar types and the mass-ratio), and if this is true determine the
instantaneous outcome – either a single star or a post-common-envelope
binary – and switch back to the detached phase;

• otherwise, the mass-transfer occurs on a nuclear or thermal timescale and
the algorithm proceeds by first calculating the amount of mass transferred
from the primary per orbital period;

• determine what fraction of the mass transferred from the primary will
be accreted by the companion star – this depends on the nature of the
companion star as well as the mass-transfer rate and includes intricacies
such as novae eruptions;

• set Δt (based on a relative mass loss from the primary of 0.5%);
• calculate the change in orbital angular momentum owing to mass loss

from the system during the mass-transfer (any mass not accreted by the
companion) and adjust the spin angular momentum of each star owing to
mass-transfer;

• calculate mass loss and accretion owing to stellar winds as for the detached
phase;

• calculate any changes to the orbital angular momentum and stellar spins
owing to stellar-wind mass changes, magnetic braking, gravitational radi-
ation and/or tidal interaction as for the detached phase;

• update the stellar spins;
• update the mass of each star and for the companion check for special cases

(such as the mass of a carbon–oxygen white dwarf reaching the Chan-
drasekhar mass, which results in a type Ia supernova and a return to the
detached phase with only the primary remaining to evolve);

• update the orbital parameters;
• advance the time by Δt and evolve both stars to the current time;
• if a supernova has occurred, call kick.f; and if the binary has become

unbound, return to the detached phase;
• test whether or not the primary still fills its Roche lobe (return to the

detached phase if it does not);
• test if the companion fills its Roche lobe, i.e. a contact binary (merge the

two stars and return to the detached phase to evolve the merger product
if true);

• start the next iteration of the roche phase.

Details of the calculations and decision-making involved in each step of the
algorithm can be found in Hurley, Tout & Pols (2002). In most cases these
are based on expressions and theory sourced from the literature. For example,
the equations that parameterize tidal evolution are taken from Hut (1981)
with additions from Zahn (1977) and Campbell (1984) for tides raised on
radiative and degenerate stars, respectively. Prescribed outcomes are derived
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from the most accepted theory or models available at the time. For example,
models suggest that white dwarfs (WDs), composed primarily of oxygen and
neon that reach the Chandrasekhar mass by accreting oxygen-rich material,
will collapse to form a neutron star (Nomoto & Kondo 1991). Therefore,
this is the outcome currently adopted in BSE. If the theory changes or new
models emerge suggesting a different outcome, the algorithm is updated to
reflect this. Updates to the BSE algorithm since its publication in Hurley,
Tout & Pols (2002) include the addition of an expression to calculate if an
accretion disk is present during Roche-lobe overflow (as given by Ulrich &
Burger 1976). The disk itself is not modelled within BSE but its presence is
accounted for when making changes to the orbital angular momentum. Future
updates might include an extension of the Roche-lobe treatment to include
non-circular theory, along the lines of Sepinsky et al. (2007).

As with the SSE package, BSE can be obtained by downloading it from
http://astronomy.swin.edu.au/jhurley/bsedload.html or by contacting
the author. Within this package, the steps describing the detached and roche
phases are contained in the evolv2.f subroutine. The package also contains
a subroutine comenv.f to deal with common-envelope evolution: this is called
from evolv2.f during the roche phase if the mass-transfer is deemed to be
dynamical and the primary is a giant-like star. If the binary evolves into
contact (both stars filling their Roche lobes), the two stars are merged and the
subroutine mix.f is called to determine the outcome after complete mixing.
An additional routine gntage.f is included to calculate the parameters of the
new star that results from such a merger or from coalescence during common-
envelope evolution.

Parameterized binary evolution naturally involves a number of input pa-
rameters that reflect uncertainties in the underlying theory. These can affect
the evolution and outcomes. An example in BSE is the common-envelope pa-
rameter α, which determines the efficiency with which energy is transferred
from the orbit to the envelope surrounding the two stellar cores as they spi-
ral towards each other. Other parameters affect aspects of the evolution such
as mass accretion from a stellar wind, mass ejected in a nova explosion, and
the change in orbital angular momentum when mass is lost from the binary
system during mass-transfer. These features will be returned to in the next
section and full descriptions can be found in Hurley, Tout & Pols (2002).

12.3 N -Body Implementation

To evolve a population of binaries using the BSE population synthesis algo-
rithm is a straightforward process. It simply involves taking each binary in
turn, evolving it to the desired physical time (such as the age of the Galaxy),
and recording the outcome. Thus, only one call to evolv2.f is required for
each binary. In an N -body code it is not so straightforward as the binary
evolution must be performed in step with the dynamical evolution of the star

http://astronomy.swin.edu.au/jhurley/bsedload.html
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cluster. If the mass of a binary changes owing to mass transfer, this must
be communicated to the dynamical interface of the code with minimal delay
so that the gravitational force calculations remain accurate. Conversely, dy-
namical interactions between a binary and cluster stars can lead to perturba-
tions that alter the orbital parameters of the binary, including disassociation,
with consequences for the binary evolution outcomes. Binary evolution within
three- and four-body sub-systems must also be accounted for (see Chap. 3),
as well as the possible existence of non-primordial binaries that form during
the cluster evolution. The binary evolution treatment must also interface with
the regularization methods that are used to follow accurately the dynamical
evolution of binaries, sub-systems and close encounters (see Aarseth 2003).

In nbody4/6 the tasks performed in the BSE subroutine evolv2.f are
split with the detached phases implemented in mdot.f and the roche phases
contained in the roche.f subroutine. Stars in a binary have their individual
tev values (time of next stellar evolution update) set equal (to the minimum
of the two) so that they will be evolved together within mdot.f. This al-
lows corrections to the spin and orbital angular momentum owing to stellar
wind mass changes to be performed as the stars are evolved. Gravitational
radiation for short-period detached binaries is taken care of by the subroutine
grrad.f from mdot.f. Similarly, tidal interactions within circular binaries are
accounted for by bsetid.f – tidal circularization of eccentric binaries is dealt
with elsewhere as part of the two-body regularization process (see below).
The subroutine brake.f is then used by mdot.f in order to update the bind-
ing energy of the binary and re-scale the associated two-body regularization
variables after any orbital changes.

Decision-making for binaries is aided by assigning the centre-of-mass par-
ticle for each binary its own tev0 and tev values. Here tev is the expected
time of the next mass-transfer update: the next call to roche.f for the binary.
For detached binaries this will be the time when one of the component stars
has evolved to fill its Roche lobe and is estimated by the subroutine trflow.f
(called from mdot.f each time a stellar evolution update is performed for the
component stars). For a semi-detached binary in an ongoing Roche-lobe over-
flow phase, this will be set in roche.f (see below). The binary tev values are
included in setting TMDOT (the smallest tev) and if mdot.f is called owing to
tev(i) being less than the current time where i represents a centre-of-mass
particle1, the evolution update switches to roche.f (called from mdot.f).

The subroutine roche.f includes all of the processes outlined in the roche
phase of the BSE algorithm with a few N -body related additions. First, as
mentioned above, a steady mass-transfer phase must now be dealt with in
a piece-wise fashion so that the binary evolution time does not get too far
ahead of the dynamical time. This is put into place using the tev and tev0

1For a system of N stars and NBIN binaries the centre-of-mass particle for binary
j sits at position i = N + j in the various arrays. The component stars sit at
(2 × j)−1 and 2×j while the single stars occupy the (2 × NBIN)+1 to N positions.
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variables: each call to roche.f evolves the binary from tev0(i) → tev(i),
unless something happens within the interval, such as a merger. Before exiting
roche.f, the routine sets tev0(i) = tev(i) and updates tev(i). If roche.f
signals termination because the primary star no longer fills its Roche lobe,
this is done with a call to trflow.f. Otherwise, tev(i) is set to the current
time plus some multiple of the current mass-transfer timestep (as described
in the previous section). This multiplication factor is in the range of 10–50
depending on whether or not the binary has a nearby perturber. The update
of tev(i) also takes into account any major stellar evolution changes on the
horizon for the component stars, such as an impending supernova explosion.

Analogous to the stellar type index used to describe the evolution state
of individual stars, there is also a kstar index for the binary centre-of-mass
particle that describes the current state of each binary. This takes on values
such as 0 for a standard eccentric binary, −2 for a circularizing binary and 10
for a circular binary. The first time that a binary enters roche.f the kstar
index is set to 11, and when the binary next becomes detached it is set to
12. Subsequently, kstar is increased by one each time a binary switches from
a detached to a roche phase, and vice-versa, such that kstar(i) = 16 would
indicate that binary i − N is currently detached but has previously evolved
through three distinct roche phases.

Another addition to the N -body version of the roche process is the subrou-
tine coal.f, which is called from roche.f when mass-transfer has ended in
coalescence of the two stars. This routine takes care of the associated N -body
book-keeping such as removing the second star and the centre-of-mass particle
from the relevant arrays and performing the necessary force corrections.

Unlike isolated binary evolution, the cluster environment provides for the
formation of non-standard binary configurations through dynamical interac-
tions. An example would be an eccentric binary that emerges from a four-body
hierarchy with one of the stars filling its Roche lobe. If such a binary enters
roche.f, it is currently dealt with by first calculating the tidal circularization
timescale and, if this is less than 10Myr, calling bsetid.f to circularize the
binary before proceeding with the mass-transfer process.

Some of the subroutines associated with the roche phase are also utilized
via an nbody4/6 subroutine cmbody.f. This is called from various parts of
the N -body code when a hyperbolic collision or a collision at periastron in an
eccentric (and non-Roche-lobe filling) binary is detected. If one or both of the
stars involved in the collision is a sub-giant or giant, cmbody.f calls expel.f
which in turn calls comenv.f to determine the outcome via common-envelope
evolution. Otherwise, the two stars are merged directly with mix.f, which
determines the outcome. If this results in the formation of a new giant star,
the BSE routine gntage.f is used to set the appropriate age and initial mass
to match the core-mass and mass of the star (this routine is also used by
comenv.f and roche.f when needed).

The main difference between the treatment of binary evolution within BSE
and that of the N -body codes relates to how tidal interactions for eccentric
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binaries are dealt with. Mardling & Aarseth (2001) have developed algorithms
that combine tidal circularization neatly with the two-body regularization
method for following the orbital evolution of binaries. These algorithms also
cope with N -body complications such as the orbit of an eccentric binary be-
coming chaotic owing to perturbations. The subroutines involved are tcirc.f
and spiral.f (as well as some subsidiary routines). There is also a related
subroutine synch.f, which models tidal synchronization. The underlying the-
ory for tides in the Mardling & Aarseth (2001) algorithm is Hut (1981), as it
is in BSE, so the two treatments are consistent. However, the option to model
tidal circularization within nbody4/6 using the BSE algorithm may be added
in the future for the sake of completeness.

Subroutines in nbody4/6 that are directly related to binary evolution are
summarized in Table 12.1. The only one not yet mentioned above is rl.f,
which contains the Eggleton (1983) function for calculating the Roche-lobe
radius of a star.

An important facet of binary evolution is setting the initial parameters –
for a population of binaries this is critical in determining the range of outcomes
that are possible. In the case of a star cluster, the relative number of tightly
bound binaries is an important factor in how the cluster itself will evolve. The
first step towards initializing a population of primordial binaries in nbody4/6

is to decide how many are to be included. This is set by the parameter NBIN0
read from the input file in the data.f subroutine. If NBIN0 is non-zero, the
subroutine binpop.f generates the parameters of the NBIN0 binaries. This
involves a number of choices that are controlled by a line of input variables
read from the input file in binpop.f. These include SEMI0, ECC0, RATIO, RANGE
and ICIRC. Both SEMI0 and RANGE affect the semi-major axes of the binaries:
if RANGE is negative, the log-normal distribution from Eggleton, Fitchett &
Tout (1989) is used with a peak at SEMI0 (in AU); if RANGE is positive, a
uniform logarithmic distribution is used with a maximum of SEMI0 (in N -
body units) and covering RANGE orders of magnitude; and if RANGE = 0, SEMI0
is the semi-major axis of all binaries. The input variable ECC0 determines the
eccentricity distribution (constant or thermal distribution) and RATIO controls

Table 12.1. Subroutines in nbody4 and nbody6 associated with binary evolution

BSE-related Other

bsetid.f brake.f

comenv.f cmbody.f

gntage.f coal.f

grrad.f expel.f

mdot.f tcirc.f

mix.f trflow.f

rl.f spiral.f

roche.f synch.f
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how the masses of the two stars are assigned from the binary mass (see also
imf.f). If the variable ICIRC is non-zero, pre-MS eigen-evolution of the orbital
parameters is invoked (Kroupa 1995).

There are also a number of input options that affect binary evolution and
related diagnostic output. The option kz(34) must be set non-zero for binary
evolution (Roche-lobe mass-transfer and tides) to occur. If kz(34) = 1 tidal
synchronization of circular binaries is performed using synch.f, otherwise it is
performed using bsetid.f. The option kz(6) controls the level of diagnostic
output for regularized binaries and kz(8) affects output relating to primordial
binaries. To date, input parameters in BSE that affect particular aspects of the
binary evolution algorithm are not included as input variables in nbody4/6.
Instead, they are hardwired into the various subroutines where they are used.
For example, the common-envelope efficiency parameter mentioned in the
previous section is set in the header of comenv.f while a number of parameters
are set in roche.f – the fraction of accreted mass that is ejected from the
surface of a WD in a nova explosion (EPSNOV), the Eddington-luminosity factor
(EDDFAC) and the stellar-wind velocity factor (BETA), to name a few.

This completes the overview of how binary evolution is treated in nbody4

and nbody6. It is by no means a comprehensive description, but should give
the interested user enough information to get started. More details can be
found in Aarseth (2003) and Hurley et al. (2001).

12.4 Binary Evolution Results

The colour-magnitude diagram (CMD) of a binary-rich nbody4 simulation
is shown in Fig. 12.1. This simulation started with 28 000 stars and a 40%
primordial binary fraction. The initial separations (or equivalently, orbital pe-
riods) of the binaries were drawn from the Eggleton, Fitchett & Tout (1989)
distribution, with a peak at 10AU and a maximum of 100AU. The model
shown is at an age of 4 000Myr when the binary fraction is still at about
40% – preservation of the primordial binary fraction is a common feature
of star cluster evolution noted in Hurley, Aarseth & Shara (2007). However,
as the cluster evolution progresses, it becomes increasingly likely that a sig-
nificant component of the binary population will be non-primordial. For the
model in Fig. 12.1 about 20% of the binaries are non-primordial and these are
primarily the result of exchange interactions. The exact proportion of binaries
formed by dynamical processes depends on factors such as the fraction of bi-
naries in relatively wide orbits, the cluster density and the stage of evolution.
Figure 12.1 can be compared to the CMD at 4 000Myr shown in Fig. 10.1
of Chap. 10 for a simulation starting with 30 000 stars and 0% binaries. The
effects of binary evolution on the locus of points in the CMD is clearly seen
and the result is much closer to the reality presented by the observations of
open clusters (Fan et al. 1996, for example).
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Fig. 12.1. Colour-magnitude diagram after 4 000Myr of evolution for a Z = 0.02
nbody4 simulation that started with 12 000 single stars and 8 000 binaries. At
4 000Myr, there are 3 382 single stars and 2 360 binaries in the model cluster. Each
binary is shown as a single point, i.e. unresolved. The luminosity and effective tem-
perature provided for each star by SSE/BSE have been converted to magnitude and
colour using the bolometric corrections given by the models of Kurucz (1992) and,
in the case of white dwarfs, Bergeron, Wesemael & Beauchamp (1995)

Some features to note in Fig. 12.1 include the broadening of the MS owing
to the presence of MS–MS binaries, with the upper edge defined by the equal-
mass binaries. Similar behaviour can be seen for the WD sequence owing to
WD–WD binaries. Points below the MS but distinct from the WD sequence
are MS–WD binaries. These evolve away from the WD sequence and towards
the MS as the WD cools and the MS star comes to dominate the colour.
The points that form an extension of the MS, hotter and bluer than the MS
turn-off, represent blue stragglers (BSs). These are MS stars that have longer
central hydrogen-burning lifetimes than expected for their mass. That is to say,
if these stars were born in the cluster with their current mass (or higher), they
would already have evolved away from the MS to become giants or WDs. Their
presence is explained by obtaining their current mass either through steady
mass-transfer in a short-period binary or as the result of a merger of two
MS stars. Either way they are a product of binary evolution. In Hurley et al.
(2005), nbody4 models were used to demonstrate how the combination of the
cluster environment and close binary evolution could explain the number and
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N

rp /R

Fig. 12.2. Distribution of periastron, Rp = a (1 − e), where a is the semi-major axis
and e the eccentricity, for: the 8 000 primordial binaries in the NBODY4 simulation
described in Fig. 12.1 (solid line); the binaries remaining in this simulation after
4 000Myr (dashed line); and the primordial binaries evolved to the same age using
BSE only (dotted line). Each distribution is normalized to a maximum of unity

nature of the BSs observed in the old open cluster M67. This included the
production of BSs in eccentric binaries, which cannot be explained by binary
evolution alone.

Figure 12.2 shows the periastron distribution for the binaries in the
nbody4 simulation of Fig. 12.1, and compares this to the primordial dis-
tribution as well as the distribution obtained when the binaries are evolved
to the same age using BSE only. We see from comparing the latter two distri-
butions that binary evolution steadily removes binaries with short periastron
distances. However, the nbody4 distribution shows that a star cluster is ef-
fective in replenishing the relative numbers of interacting binaries. This is
done at the expense of the wide binaries, which are broken up in encounters
with other cluster members. In closing it is noted that binary evolution is
important for proper accounting of the orbital properties of the binary popu-
lations of star clusters, especially, as the presence of binaries, and in particular
tightly bound binaries, can critically affect properties such as the structure
and lifetime of a star cluster.
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13.1 Introduction

Models of stellar clusters link the theoretical gravitational N -body problem
to the study of real astrophysical systems. Such models require a description
of the stars contained within the cluster. Stars are interesting objects in their
own right, and the study of stellar evolution is important across astronomy,
from the formation of exotic objects such as X-ray binaries and gamma-ray
bursts to measuring the ages of galaxies.

The physical processes important for stellar evolution theory as well as
qualitative results are discussed elsewhere in this book. Here the technical
problem of computing the structure and evolution of the stars is considered.
How can we solve the set of differential equations that describe the interior
of a star to obtain a model of its physical properties? A brief mention will be
made of some of the uncertainties in stellar physics and how they affect the
results obtained.

The stellar evolution code used as an example in this text is stars, the Cam-
bridge Stellar Evolution Code. Written originally by Peter Eggleton (1971),
it is widely used by astronomers working in the field of stellar evolution.
It has the advantage of being relatively concise and simple in its construc-
tion, owing mainly to the elegant treatment of meshpoint placement and con-
vective mixing. The code itself can be downloaded from http://www.ast.
cam.ac.uk/research/stars.

13.2 Equations

In order that a star can be modelled efficiently for its entire lifetime, which
greatly exceeds its dynamical timescale, simplifying physical assumptions
must be made. The star is usually taken to be spherically symmetric and in hy-
drostatic equilibrium. This reduces the problem to a single spatial dimension,
but necessitates that the process of convection be treated empirically. These
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assumptions lead to the four equations of stellar structure. A detailed deriva-
tion of these equations can be found in any standard text on stellar struc-
ture and evolution, for example, Schwarzschild (1965); Cox & Giuli (1968);
Kippenhahn & Weigert (1994); Prialnik (2000), as well as Chap. 9 of this
book. In summary, the equations are

dm
dr

= 4πr2ρ, (13.1)

dP
dr

= −Gmρ

r2
, (13.2)

dT
dr

=

⎧
⎪⎪⎨
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− 3κρL
16πacr2T 3

(radiative regions)

∇a
T

P

dP
dr

+ Δ∇T (convective regions)

, (13.3)

dL
dr

= 4πr2ρε, (13.4)

where m is the mass within radius r of the centre of the star, P the pressure,
ρ the density, L the luminosity, T the temperature and κ the Rosseland mean
opacity. The adiabatic temperature gradient ∇a is calculated from the equa-
tion of state of the star, whilst the superadiabatic temperature gradient Δ∇T
is obtained from mixing length theory. The energy liberation rate per unit
mass, ε, contains contributions from gravitational expansion and contraction,
nuclear reactions and neutrino emission.

In addition to the equations of stellar structure, it is necessary to take
into account composition changes owing to nuclear burning and mixing. The
process of mixing can be modelled as diffusion with an appropriate coefficient.
This leads to a set of equations for the evolution of the chemical composition:

∂Xi

∂t
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ρ

⎛

⎝
∑

j

Rji −
∑

k

Rik

⎞

⎠− ∂
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(

σ2 ∂Xi

∂r

)

, (13.5)

where Rij is the rate of conversion of element i into element j per unit volume,
mi is the atomic mass of element i and σ is a diffusion coefficient, usually
obtained from mixing length theory.

13.2.1 Boundary Conditions

The central boundary conditions of a stellar model are straightforward; at the
centre m = 0, r = 0 and L = 0, although in practice stars does not use a
central meshpoint. The surface of the star is placed where the temperature
equals the effective temperature, given by

L = 4πR2σT 4
eff (13.6)

for a star of luminosity L and radius R.
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The Eddington closure approximation, together with a thin grey atmo-
sphere, is used to obtain the gas pressure at the surface,

Pg =
2
3
g

κ

(

1 − L

LEdd

)

, (13.7)

where LEdd is the limiting Eddington luminosity and g the surface gravity.
The total mass of the star, equal to the value of m at the outermost meshpoint,
changes according to

dM
dt

= −W, (13.8)

where W is the stellar wind. There is no general theory of stellar winds and
a number of empirically determined formulae are commonly used. During the
main-sequence phase all but the most massive stars are assumed to lose no
mass, the solar wind being evolutionarily negligible. For the red-giant phase
the formula of Kudritzki & Reimers (1978) is commonly used, whereas on the
asymptotic giant branch (AGB) the formulae of Blöcker (1995) and Vassiliadis
& Wood (1993) are popular.

13.3 Variables and Functions

A stellar model is defined in terms of a set of independent variables.1 The
physical variables used in stars are log T , logm, log r, L, log f , X1H, X4He,
X12C, X16O and X20Ne. The first four are standard physical quantities defined
above. Note that the luminosity can be negative and hence its logarithm can-
not be used. The quantity f is a function of the electron degeneracy parameter
ψ and is explained in Sect. 13.3.2. The composition of the star is measured by
the mass fractions Xi of various isotopes. Because the mass fractions must sum
to unity, these numbers also determine the mass fraction of another isotope,
14N. All other compositions are assumed to either be constant, for example,
iron, or zero.

13.3.1 The Mesh

Whilst a real star is continuous, a computer can only hold a finite quantity
of data and hence the star must be discretised on to a mesh of points. The
placement of these points is crucial to the functionality of the code. Areas
of interest in a star must be sufficiently resolved; in particular the burning

1Speaking in a strictly mathematical sense, there are only two independent vari-
ables in the problem, m and t. All the other variables are dependent on these im-
plicitly through the equations listed in Sect. 13.2. To explicitly define a model of a
star, however, one needs values of all the 11 variables and it is possible to vary these
variables independently; the resulting model may not, however, represent a physical
star. Hence, it is reasonable to refer to them as independent variables.
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shells in giants and ionisation zones in the envelope. The use of too many
meshpoints, however, increases the memory requirements and slows the code
down. An Eulerian mesh of points at constant radii performs poorly because
the stellar radius can change by several orders of magnitude over the star’s life-
time. Meshpoints placed at constant mass co-ordinates to form a Lagrangian
mesh work better, but then the points must be moved as the evolution pro-
ceeds to keep interesting parts of the star well resolved. A unique feature of
stars is that the mesh is positioned automatically by the equation solving
package. A further equation is solved by the code to make the gradient with
respect to the meshpoint number of a function Q constant throughout the
star. The function is chosen to cause points to be placed in regions of physical
significance. The form usually adopted is

Q = c4 log(P ) + c5 log
(
P + c9
P + c1

)

+ c2 log
(
P + c10
P + c1

)

+ c7 log
(

T

T + c11

)

+ log
(

c6M
2/3

c6M2/3 +m2/3

)

+ c3 log
(
r2

c8
+ 1

)

, (13.9)

where the constants ci are chosen by the user. Because

C =
dQ
dk

=
dQ
dm

dm
dk

(13.10)

is constant, the mass resolution, which is inversely proportional to dm/dk,
is largest where Q varies most quickly with mass. Given appropriate val-
ues of the coefficients, the second and third terms have the effect of driving
meshpoints into the hydrogen and helium burning shells. This substantially
improves numerical stability during thermal pulses on the AGB.

13.3.2 The Equation of State

It is necessary to have an equation of state for the material that makes up a
star. A common approach is to use a set of tables for different temperatures,
densities, etc. stars, conversely, utilises the semi-analytic equation of state
described by Pols et al. (1995). Contributions to the Helmholtz free energy
from radiation, ions and electrons are considered, along with some non-ideal
effects. The Fermi-Dirac integral over the momentum states of the electron
is simplified by working with the quantities f and g chosen so that a power
series therein has the correct asymptotic form for limiting values of ψ and T .
The quantities f and g are defined by

ψ = 2
√

1 + f + log
√

1 + f − 1√
1 + f + 1

(13.11)

and
g =

kT

mec2

√
1 + f. (13.12)
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Full details of the series can be found in Eggleton, Faulkner & Flannery (1973).
Although most of the equation of state is calculated in real time, there

are still a few tabulated quantities. The opacities are too complicated to be
calculated analytically, likewise the nuclear reaction and neutrino loss rates.
These are included as tables of numerical values; bicubic spline interpolation
is used within the opacity tables.

13.4 Method of Solution

The Henyey, Forbes & Gould (1964) relaxation method solves the equations
of stellar structure and evolution by making small changes to the structure
obtained at the previous timestep, and adjusting the resulting model until it
solves the equations. This use of information from a previous timestep greatly
improves the speed of calculations over a simple shooting method and is used
in almost every modern stellar evolution code.

If the subscript i is allowed to run over the set of Ne equations at Np

meshpoints, and the subscript j over the Nv variables at Np meshpoints, by
bringing all the terms on to one side of the equations of the solved code can
be written implicitly as

Ei(vj) = 0. (13.13)

Then for a complete stellar model vj the degree to which it does not satisfy
the equations is

δEi = Ei(v). (13.14)

The model from the previous timestep is used as an initial guess for v. By
numerical differentiation of each equation with respect to each variable, one
can obtain

Aij =
∂Ei

∂vj
. (13.15)

Most of the entries in A vanish. Because the equations are either first or
second order, spatially an element in A depends only on values within the
adjacent one or two meshpoints; hence A is block-diagonal. This enables it to
be economically inverted and corrections to the variables are calculated as

δvj = A−1
ji δEi. (13.16)

This process is iterated in a manner analogous to the Newton-Raphson method
until the convergence criterion is met. It is required that the average change in
δvj in a single iteration is less than a user-supplied constant. In practice, this
procedure is sometimes slightly modified to improve stability of the solution
method. Only part of the correction is applied under some circumstances
to prevent the solution being overshot. This is equivalent to reducing the
magnitudes of the eigenvalues of the iteration matrix. It is also usually better
to use vj + δvj from the previous timestep as a first guess rather than vj ; that
is, to start the iteration with the changes applied at the previous timestep.
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13.4.1 Timesteps

The timestep δτi that the code uses is determined by an ad-hoc formula:

δτi = δτi−1 ×
Δ

∑
jk |δXjk|

, (13.17)

where δτi−1 is the previous timestep, δXjk the change in variable j at mesh-
point k and Δ is a user-supplied constant. The sum is evaluated over the
variables omitting the luminosity, because this fluctuates too much to be use-
ful. A larger value of Δ allows the variables to change more in a single timestep
and hence larger timesteps to be taken. Because the change at a single mesh-
point is independent of the number of meshpoints, it is necessary to scale Δ
linearly with the number of meshpoints; different values are appropriate to
different phases of evolution. In the standard case of 199 meshpoints Δ = 5
provides adequate results.

If the iterative process fails to find a set of values for the variables that
satisfy the equations with sufficient accuracy, a model is deemed to have not
converged. The code reverts to the previous model and the timestep is reduced
by a factor of 0.8. Multiple reductions in timestep are possible for a system
that is failing to converge, but when the timestep has fallen below 1% of its
first tried value the code stops attempting to converge.

A graph of the variation of the timestep with model number during the
evolution of a 1M� star is shown in Fig. 13.1. One can see that it has a
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Fig. 13.1. Variation of the timestep during the evolution of a 1 M� star. The model
number is plotted on the abscissa; this increments by unity for each converged stellar
model. The ordinate shows the timestep in years. This model was run with 199
meshpoints and Δ = 5 throughout
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very large dynamic range; there is a difference of approximately 109 between
the shortest and the longest timesteps. The initial peak in the timestep and
that around model number 600 are the main sequence and horizontal branch,
respectively. The timestep increases substantially again towards the end of
the run as the star descends the white dwarf cooling track. The discontinuity
around model 500 represents pseudo-evolution through the helium flash (see
Sect. 13.6.1) and the period of short timesteps from model 1000 onward on
the post-AGB.

13.5 The Structure of STARS

stars comprises 20 subprocedures, which can be divided up into four groups,
the solution package, physics package, the flow control routines and the initial
setup routines, as well as a few vestigial routines. The solution package consists
of the following procedures:

• solver, which solves the implicit matrix equation (see (13.13)),
• difrns, which differentiates the equations to be solved,
• elimin8, which carries out some matrix manipulations and
• divide, which implements matrix inversion.

The physics package contains

• equns1, which calculates the values of the difference equations and their
boundary conditions,

• funcs1, which calculates various quantities from the principal variables,
mostly for use in equns1,

• statef, which evaluates the equation of state at a given meshpoint,
• statel, which decides whether it is necessary to call statef,
• fdirac, which evaluates Fermi-Dirac integrals,
• pressi, which approximates pressure ionisation,
• opacty, which does spline interpolation within the opacity tables and
• nucrat, which calculates nuclear reaction rates.

The flow control routines are

• main, which provides the main integration loop and basic flow control,
• printa, which determines the next timestep, updates the matrix, controls

input and output and does sundry minor tasks for which there is no obvious
alternative location and

• printb, which writes most of the output files.

Finally, the initial setup routines are

• opspln, which sets up the opacity tables,
• spline, which calculates spline coefficients,
• remesh, which attempts to remesh the model to a different grid,
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Fig. 13.2. A schematic illustration of the operation of the stars code. Arrows
indicate the direction in which one subroutine calls another. The division of the
code into sections with different functionality is shown

• consts, which sets up physical constants and
• compos, which sets small or negative compositions to zero.

The interaction of the first three groups of these subroutines can be seen
in Fig. 13.2. Note that the physics package is called via funcs1, from several
places in the rest of the code.

13.6 Problematic Phases of Evolution

The iterative procedure that stars uses to converge a model is not guaranteed
to arrive at a solution. Usually, the desired solution is sufficiently close to the
starting model that it does so, but in some situations this is not the case.
Problematic phases of evolution are mostly those where the structure of the
star is changing quickly. As well as requiring small timesteps, such phases
of evolution often cause the mesh to move rapidly through the model. The
advection terms in the equations that are included to deal with movement
of the mesh are then large in magnitude but opposite in sign. This causes
numerical problems.



13 Stellar Evolution Code 341

Phases of evolution that routinely cause problems are the helium flash,
thermal pulses on the AGB, the post-AGB, degenerate carbon ignition in
super-AGB stars, heavy element burning subsequent to neon ignition and the
very late stages of white dwarf evolution. Brief notes on how these problems
can be tackled are given below.

13.6.1 The Helium Flash

In stars of M � 2.3M� the core is degenerated at the time of helium ignition.
The increased temperature owing to helium burning does not cause expansion
and thermonuclear runaway occurs (Schwarzschild & Härm 1962). This is
the helium flash. To circumvent these problems, one can use an empirical
procedure to construct approximate post-flash models with stable core helium
burning. A star of mass M � 3M� that has evolved successfully through
non-degenerate core helium ignition is taken and matter removed from the
envelope until the desired mass is reached. The hydrogen burning shell is
allowed to burn outwards with helium consumption disabled in order to obtain
the correct core mass. The envelope compositions are reset to their pre-flash
values and normal evolution is resumed. Whilst not physically rigorous, this
process provides models that can be used to study subsequent evolution.

13.6.2 The AGB

Evolution through thermal pulses on the AGB using stars is possible, but
only with a modified version of the code and considerable effort (Stancliffe,
Tout & Pols 2004). An easier, though less accurate, approach is to avoid
modelling the pulses. A relatively low resolution of 199 meshpoints per model
and a comparatively large value of the timestep control parameter, Δ = 5,
suppress thermal pulses on the AGB. Their exclusion changes the composition
of material ejected in stellar winds and, for the more massive AGB stars, the
mass of the core and hence the final white dwarf mass.

13.6.3 Late Stages of Intermediate-Mass and High-Mass Stars

The problems in the late stages of the lives of intermediate-mass and high-mass
stars are more tricky to deal with. Degenerate carbon ignition in lower-mass
super-AGB stars and the post-AGB cannot be avoided as thermal pulses and
the helium flash can. Stars that ignite carbon mildly degenerately, probably
go on to form oxygen-neon white dwarfs, although the most massive amongst
them may end their lives as neutron stars. The post-AGB is the final stage
of evolution of AGB stars, and it is reasonable to assume that once a star
reaches this point it forms a white dwarf.

Heavy element burning is only really of interest for the calculation of pre-
supernova models. Very little stellar evolution significant for N -body calcula-
tions takes place after the ignition of neon and it is reasonable to terminate
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a star’s evolution at this point. Likewise, problems in the evolution of white
dwarfs mostly occur at times comparable with the Hubble time. In any case,
the bulk properties of the star change very little after this point.

13.7 Robustness of Results

The theory of stellar structure and evolution contains substantial uncertainty.
In particular, some of the input physics is not well determined. Convection is a
three-dimensional process and the one-dimensional mixing length theory used
to approximate it cannot be entirely accurate. Mixing length theory contains
a free parameter, α, related to the length scale of convective plumes. Its value
is usually obtained by fitting a solar model, but there is no reason why it
should not vary between stars of different masses or in different evolutionary
phases. There is substantial evidence that for many stars the amount of mix-
ing predicted by the Schwarzschild criterion is insufficient and that processes
that cause extra mixing occur in stars. Some candidates for these are stellar
rotation, convective overshooting and internal gravity waves. Nuclear reaction
rates, even some of those most important to the structure of a stellar model,
are substantially uncertain. For example, the rate of the 14N(p, γ) reaction
that forms the slowest step in the CNO cycle is uncertain to approximately
a factor of 2 (Herwig, Austin & Lattanzio 2006). There is no general theory
of stellar mass loss, so it is necessary to use empirically measured values of
questionable accuracy. There are also uncertainties in the opacity of stellar
material and in models of stellar atmospheres.

To illustrate briefly the effects of two of these uncertainties, a set of stellar
models with varying input physics are presented here. Models of masses 1M�,
2M�, 4M�, 8M� and 16M� have been calculated varying two uncertain
physical parameters. In one set of models extra mixing was added according
to the prescription of Schröder, Pols & Eggleton (1997). In the the other the
rate of the 14N(p, γ) reaction was doubled. This is the slowest step in the CNO
cycle and hence determines how fast hydrogen burning occurs according to
that process.

13.7.1 HR Diagrams

The effects on the HR diagram of changing the input physics are largest
in the case of the 4M� and 8M� stars. HR diagrams for these two stars
are presented in Fig. 13.3. It can be seen that changing the degree of extra
mixing has a dramatic effect on the position of the blue loop (horizontal
branch) in the HR diagram. The increased mixing draws more hydrogen into
the core, increasing its size and hence the luminosity of the star. There is also
a slight, but much less pronounced, difference when the CNO burning rate is
changed.
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Fig. 13.3. HR diagrams for stellar models of mass 4 M� (top panel) and 8 M�
(bottom panel). The thick solid line is the standard model, the dashed line the model
with extra mixing and the dotted line the model with the enhanced CNO burning
rate

13.7.2 Stellar Lifetimes

The effect of increased mixing and the enhanced CNO rate on main-sequence
lifetimes is shown in Fig. 13.4. Stars spend the majority of their lives on
the main sequence and hence this time is a useful measure. It also has the
advantage of being better defined than the total stellar lifetime.

The main effect that can be seen is that models more massive than the Sun
with extra mixing have substantially increased lifetimes. This is because their
convective cores are enlarged by the extra mixing. The cores have more fuel
to burn and hence the main sequence is prolonged. As the 1M� model has a
radiative core, it is unaffected by changing the degree of convective mixing.
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Fig. 13.4. The effect of enhanced mixing and increased CNO reaction rate on
the main-sequence lifetimes of stellar models. The top panel shows the lifetimes of
the standard stellar models as a function of their masses. The lower panel shows the
percentage change in the main-sequence lifetime with respect to the standard model
when the input physics is changed. The crosses represent the calculations with extra
mixing, the squares those with an enhanced CNO reaction rate

The effect of increasing the CNO rate on the main-sequence lifetime is
considerably counter-intuitive. For the stars in which the CNO cycle is the
dominant reaction on the main sequence the lifetime increases slightly, whereas
for the 1M� model where it is not the dominant reaction it decreases slightly.
The reason for the increase in lifetime is that the structure of the model
depends on the conditions in the core. If the CNO rate is doubled from the
standard value, too much energy is generated in the core of the star for the
structure that it supports. As a result, the star expands and the core becomes
cooler and less dense until equilibrium is regained. At the new equilibrium
point the structure is such that a lower energy flux is needed to support the
star. Hence, hydrogen burns more slowly and the star lives longer. In the
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1M� model the dominant reaction rate is the pp chain and hence the change
in the CNO rate does not have the same structural effect on the model. The
small amount of CNO burning that does take place, however, is increased and
hence the main-sequence lifetime is reduced. This effect demonstrates another
important point about stellar evolution: it is a highly non-linear process, and
simple assumptions about the behaviour of stars that are not supported by
detailed calculations often turn out to be incorrect.
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14.1 Introduction

This chapter is an introduction to realistic N -body modelling of globular clus-
ters – specifically, why it might be desired to conduct such models and what
constitutes their key ingredients. Detailed consideration is also given to the
analysis of data from such simulations, and how it is increasingly becoming
more important to perform simulated observations in order to derive quan-
tities that are directly comparable with real-world measurements. The most
salient points from this general discussion are illustrated via an extensive case
study concerning N -body modelling of massive stellar clusters in the Large
and Small Magellanic Clouds.

14.2 Realistic N -Body Modelling – Why and How?

N -body modelling has long been an important tool for exploring the evolu-
tion of star clusters. All major phases of cluster evolution, from early mass
loss through to core collapse, gravothermal oscillations, and tidal disruption,
have been investigated with N -body simulations (as well as other types of
modelling), and they have played a large part in forming our current under-
standing of cluster evolutionary processes (see e.g. the review by Meylan &
Heggie 1997). Even so, due to the massive computational workload involved
with the direct, accurate integration of a large number of particles over very
long time-scales, historically N has been restricted to relatively small values
(a few thousand, or with major effort, a few tens of thousand). In addition,
much of the complexity of real clusters (such as the processes involved with
stellar evolution, binary star evolution, stellar collisions, time-varying tidal
fields, and so on) has often, by necessity, been neglected. These two factors
have meant that the investigation of globular cluster evolution with N -body
modelling has generally involved the extrapolation of results to larger N , and

Mackey, A.D.: Realistic N-Body Simulations of Globular Clusters. Lect. Notes Phys. 760,

347–376 (2008)

DOI 10.1007/978-1-4020-8431-7 14 c© Springer-Verlag Berlin Heidelberg 2008



348 A. D. Mackey

approximations due to incomplete implementation of the complicated inter-
play between various internal and external evolutionary processes.

In the last decade, however, and particularly within the last few years,
there have been two major advances that have propelled the field of cluster
N -body modelling into a new era. The first of these is the advent of special
purpose hardware, most recently the GRAPE-6 machines (Makino et al. 2003;
Fukushige, Makino & Kawai 2005), to accelerate the direct N2 summation of
gravitational forces. These have greatly reduced the computational bottleneck
associated with large N , and simulations covering a Hubble time of evolution
with N ∼ 105 – that is, at the lower end of the globular cluster mass function –
are now within reach.

The second advance concerns the sophistication of the N -body codes them-
selves. Several of the major codes, such as Aarseth’s nbody4 (Chap. 1; see
also Aarseth 2003)1 and the starlab software environment2, have now pro-
gressed to the stage where most, if not all, of the major internal and external
evolutionary processes in a star cluster have successfully been incorporated.
Such processes include single-star and binary star evolution, stellar collisions
and the formation and destruction of hierarchical systems and, arbitrary ex-
ternal tidal fields. The sophistication of available N -body codes, combined
with the integrating power of special purpose hardware, means that direct,
realistic simulations of massive stellar clusters are now possible.

This aim of this chapter is to present an overview of realistic N -body mod-
elling of globular clusters. In particular, we will discuss in what situations it
is desirable to invest the time and effort to run and analyse a realistic N -body
model, and examine the most important aspects of the N -body codes, which
allow such realism. Since many (if not all) of the latter have been covered in
significant detail elsewhere in this series of lectures, we will spend most of our
time examining the processes involved with reducing the large amounts of data
that come out of a realistic simulation, and in particular discuss the concept
of “simulated observations” which is becoming increasingly prominent. Since
this constitutes some very general discussion, much of it from an observer’s
perspective, the best way to illustrate the most important points is via a spe-
cific case study – we examine recent direct, realistic N -body modelling of the
evolution of massive stellar clusters in the Magellanic Clouds.

14.2.1 Why Run a Realistic N-Body Model?

There are a number of advantages to running large-scale, realistic N -body
models. First, unlike with many methods used to model star cluster evolu-
tion, a sophisticated N -body code includes all the important physics with a
minimum of simplifying assumptions. Hence, for example, if one is interested
in investigating the long-term evolution of hierarchical systems within a stel-
lar cluster, in a realistic N -body simulation it is possible to integrate directly

1Available for download from http://www.ast.cam.ac.uk/research/nbody
2See http://www.ids.ias.edu/~starlab/

http://www.ast.cam.ac.uk/research/nbody
http://www.ids.ias.edu/~starlab/
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the orbits of all stars – no gravitational softening, or similar modifications,
are required.

Similarly, because all the important physics is being included in a self-
consistent manner (e.g. the stars and binaries are evolving in step with the
cluster evolution) one can be reasonably confident that the complex inter-
play between various evolutionary processes in a cluster is being accounted
for. Even though star clusters are generally considered to be relatively simple
astrophysical systems, in that they are often approximately spherically sym-
metric, and consist of stars with a uniform single age and metallicity, they
are in fact complicated objects and it is often extremely difficult to isolate (or
predict) the effects of individual physical processes in a cluster.

For example, consider the production of blue stragglers in a globular clus-
ter. It is generally accepted that there are a number of channels leading to the
formation of such objects – for example, Roche-lobe mass transfer in a binary
star, or the coalescence of a highly eccentric binary star after a strong inter-
action. It is complicated to determine the relative importance of formation
channels in a star cluster, and the resulting properties of the blue stragglers,
because much interplay between competing processes occurs. For example, the
structural and dynamical state of the cluster plays an integral role in defining
the collision (strong interaction) rate between individual members. However,
the state of the cluster is strongly affected by the stellar evolution within the
cluster, by related parameters such as the initial mass function, the metallic-
ity, and so on, and by the properties of the external tidal field. In addition,
the properties of any binary stars in the cluster are strongly affected by both
the structural and the dynamical state of the cluster, as well as the stellar
evolution of the individual members of the binary (especially if processes such
as mass transfer occur). In certain cases (such as during deep core collapse),
the binaries themselves can in turn affect the cluster structure and dynamics.
Given all this, if one wishes to investigate the production and properties of
blue stragglers in a cluster, a realistic N -body simulation offers a very powerful
means of accounting for (and following) this complicated interplay.

A third advantage to running realistic N -body simulations is that with
present technology one is now able to directly compare simulations with real
clusters for realistic N up to that corresponding to low-mass globular clusters.
Even for higher-mass clusters, it is almost always possible to choose an N
which corresponds within an order of magnitude. We are therefore now moving
into the regime where many of the scaling-with-N issues which have been
necessary to account for in the past when applying the results of N -body
simulations to the evolution of real clusters (e.g., Aarseth & Heggie 1998),
are circumvented. In addition, with such large N , fluctuations in the global
evolution of the N -body model are reduced to the point where they are not
significant. For small-N models, it has been standard practice to average the
results of a number of simulations to reduce such fluctuations, the amplitudes
of which increase with decreasing N (e.g., Giersz & Heggie 1994; Wilkinson



350 A. D. Mackey

et al. 2003). For large-N models, it is becoming increasingly clear that this
process is not necessary (e.g., Hurley et al. 2005; Mackey et al. 2007, 2008a).

Finally, given both the fact that processes such as stellar evolution are
modelled along with the gravitational interactions between particles, and that
we often do not have to worry about extrapolating our results to larger N ,
it is possible to apply sophisticated techniques to the analysis of realistic
N -body simulations. More specifically, it is possible to realistically simulate
observations of N -body models. This aspect is especially important if one
is trying to compare an N -body simulation with a real system (which will
inevitably have properties defined through observation), or if one is trying to
make predictions about the properties of a real system (which will have to
be tested observationally). This concept is discussed in more detail below, in
Sect. 14.2.3, and examples are given in Sect. 14.3.

Even taking into account the above advantages, it is important to under-
stand that it will not always be necessary to invest the time and effort in
running a large-scale, realistic N -body model. One should always consider
carefully what question is under investigation and how best to answer it. If
the physics can be sufficiently well modelled with small-N clusters, or without
needing to include degrees of sophistication such as stellar evolution or sim-
ulated observations, then running less complicated models will naturally be
preferable (and almost certainly far quicker and more efficient) than investing
in a direct, realistic N -body simulation.

14.2.2 Key Ingredients in a Realistic N-Body Model

There are two main ingredients in setting up and running a realistic N -body
model – the N -body code itself, and the generation of initial conditions.

N-Body Codes

It is worth considering briefly the major components of a realistic N -body
code. As noted earlier, there are a number of such codes publicly available.
Prominent examples are nbody4 (for use with the GRAPE-6 special pur-
pose hardware), nbody6 (for use without GRAPE-6) and nbody6++ (a
parallelised version of nbody6), and the starlab environment. Here we will
consider the code nbody4 and note that much of the discussion also applies
to the other codes. Since most of the following is covered in great detail by
other contributions to this lecture series, we will not delve too deeply into
the computational details. Nonetheless, it is important to understand what
primary ingredients make up a realistic N -body code.

These main components can be divided into three different groups: the
integration routines, the stellar evolution routines, and the binary evolution
routines. Let us consider these in order. In nbody4, the equations of mo-
tion are integrated using the fourth-order Hermite scheme (Makino 1991), in
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combination with a GRAPE-6. An external tidal field is incorporated by inte-
grating the equations of motion in an accelerating but non-rotating reference
frame, centred on the cluster’s centre-of-mass (see e.g. Wilkinson et al. 2003,
and references therein for more details). The integration proceeds using the
N -body units of Heggie & Mathieu (1986), which are converted to physical
units for output using a length scale generally set at the beginning of a run via
comparison to a real cluster (see Sect. 14.3.2). A close multiple system (such
as a hard binary) is treated as a combined centre-of-mass object in the Her-
mite integration, while the detailed orbits of the individual components of the
multiple system are integrated separately using state-of-the-art two-body or
chain regularization schemes, as applicable (Mikkola & Aarseth 1993, 1998).
The point of two-body regularization is that binary star orbits, and partic-
ularly perturbed binary motion, can be followed at high accuracy without
resorting to the introduction of gravitational softening. Chain regularization
extends this possibility to close encounters between more than two stars (such
as in a binary–binary interaction).

Stellar evolution in nbody4 is incorporated by means of the analytical for-
mulae of Hurley, Pols & Tout (2000), who derived them from detailed stellar
evolution models, following stars from the zero-age main sequence through
to remnant phases (such as white dwarfs, neutron stars and black holes).
Each star is initially assigned a mass (the formulae cover the mass range
0.1–100 M�), and a single metallicity for the cluster may be selected in the
range Z = 0.0001–0.03. The stellar evolution is calculated in step with the dy-
namical integration, and includes a mass-loss prescription such that evolving
stars lose gas through winds and supernova explosions. This gas is instanta-
neously removed from the cluster, which is a reasonable approximation since
outflow speeds are generally large compared to the cluster escape velocity. An
important consequence of the introduction of stellar evolution is that each
star possesses a finite radius (as opposed to being a point mass), which varies
as its evolution progresses. This is vital when considering close encounters
between stars, including effects such as tidal capture. Furthermore, the stellar
evolution parameters calculated in the routines in nbody4 (such as luminos-
ity and effective temperature) may be used to derive absolute magnitudes and
colours, although this is not done within the code itself. This allows simulated
observations of the model cluster to be made if necessary.

Binary star evolution is calculated in a similar manner to single-star evo-
lution, following the analytical prescription of Hurley, Tout & Pols (2002) and
allowing for such phases as the tidal circularization of orbits, mass transfer,
common-envelope evolution, and mergers. Algorithms such as stability tests,
which allow the consideration of triples and higher-order hierarchical systems,
are also implemented within the code. Details of the tidal evolution and sta-
bility routines are discussed in Chap. 3, and Mardling & Aarseth (2001). As
with the single-star evolution, binary star evolution is calculated in step with
the overall dynamical integration.
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Initial Conditions

Generating high-quality initial conditions is of paramount importance when
running a realistic N -body model. Generally, the reason for wanting to run a
realistic N -body simulation will be to directly model one or more real clusters.
In such cases, the initial conditions are defined naturally by the clusters under
consideration, although it may be necessary to infer them (for example, if the
real clusters are dynamically evolved). In addition, since the initial conditions
for the real clusters are almost certainly defined (or at least constrained) by
observational measurements, it may well be necessary to implement simulated
observations in order to confirm the generated initial conditions in the N -body
model are as accurate as possible (see e.g., Sect. 14.3.7).

There is a significant number of variables to consider when setting initial
conditions and the parameter space can therefore be very large. For example,
consider the following (non-exhaustive) list:

• What is the initial cluster structure? The central density, core and/or
half-mass radius, tidal limit, and the radial density profile all need to be
appropriate to the problem under consideration.

• What is the initial dynamical state? Should the cluster be starting in virial
equilibrium or is some other state more appropriate?

• What is the most appropriate initial mass function (IMF)?
• What is the most appropriate range of stellar masses?
• What is the total cluster mass Mtot?
• Mtot, the IMF, and the stellar mass range allow N to be calculated. Is this

number realistic to model in a reasonable time-frame?
• What is the cluster metallicity?
• Should there be any primordial mass segregation in the cluster?
• Are there any primordial binaries in the cluster? If so, then what should the

overall binary fraction be, and how should they be distributed spatially?
• What properties do any primordial binaries have? What are the distribu-

tions for the mass ratio, semi-major axis, and orbital ellipticity?
• What is the external tidal field?
• Are any special modifications to the code required? For example, to incor-

porate specific stellar evolution, or a new external tidal field, etc.

It is also important to consider practicalities for a given simulation, like its
required duration (this will be constrained by the real systems being mod-
elled), how frequently data should be produced during the run (this will be
constrained by the temporal resolution required to investigate properly all
questions under consideration) and whether the resulting disk space require-
ments can be met.

14.2.3 Data Analysis: Simulated Observations

There is a number of reasons why one may be running a large-scale, real-
istic N -body simulation. For example, the aim may be to directly model
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one specific cluster (see e.g., Hurley et al. 2005), to try and understand the
global properties of a system of clusters (see e.g., Mackey et al. 2007), or to
investigate a more general question like the effect of cluster metallicity on
structural evolution (see e.g., Hurley et al. 2004). In most (if not all) such
cases, the problems under investigation will be defined by the observations
of real systems. Furthermore, any results from the simulations may lead to
predictions for real systems that will require observational verification. For
these reasons, it is necessary to treat the analysis of data from a realistic
N -body simulation with some degree of sophistication. Specifically, the most
useful results are likely to be obtained by simulating observations of the model
cluster(s).

This will not constitute all of the data analysis for a given simulation.
It is still necessary to perform more traditional analysis to understand the
aspects of the global or specific evolution of a model cluster. Nonetheless, if
one wishes to obtain measurements from an N -body simulation, which are
to be compared directly with observational measurements of real systems,
considerable care must be taken that the derived quantities are indeed directly
comparable. If this is not the case, significant error can result, as highlighted
in Sect. 14.3.6. The most straightforward means by which it can be ensured
that directly comparable quantities are obtained is by closely reproducing the
original observational analysis on the N -body model.

In undertaking such a process, the most important thing is to adopt an ob-
server’s perspective. In particular, it is vital to be aware of the circumstances
and limitations of the genuine observations, and make sure that these are ap-
plied to the simulated observations. It should be clearly understood exactly
what was observed in a cluster (e.g. maybe just red giant branch stars), what
quantities were actually measured, and what processes were used to obtain
these measured parameters. Detailed examples of this methodology are set out
in Sects. 14.3.4, 14.3.6 and 14.3.7. For a theoretician or N -body modeller, ac-
customed to being able to consider any aspect of a simulated cluster at will, it
is often surprising how crude many genuine observations are. Detailed observ-
ing in a globular cluster can be a very difficult feat, which has only recently
become fairly routine due to the arrival of extremely high-quality telescopes
and instruments, such as the Hubble Space Telescope (HST), particularly
its associated cameras (WFPC2, ACS, etc.); and the Very Large Telescope
(VLT), particularly its spectrographs (UVES, FLAMES) and adaptive optics
instruments (e.g., NACO). Even so, the process of obtaining simulated ob-
servational measurements from a realistic N -body run will invariably involve
degrading the data significantly, because star cluster observations generally
only measure a small fraction of the stars in a cluster.

Simulated observations serve a number of functions in addition to their
use in the primary analysis of the results from an N -body simulation. As
discussed above in Sect. 14.2.2, in many situations the initial conditions for
a realistic N -body model will be defined or constrained by the observations
of a genuine system or systems. In such cases, simulated observations of the
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initial state of the model N -body cluster can be used to verify the validity of
the adopted initial conditions, and can often be used to fine-tune these initial
conditions. Examples of this are provided in Sects. 14.3.3 and 14.3.7.

Furthermore, simulated observations of an N -body cluster can provide
important information about the quality of the real set of observations they
are designed to reproduce. Since it is possible to do “perfect” observations
on an N -body model and thus gauge the true state of the model at any
particular time, by then degrading the observational quality to that of the real
measurements, one can investigate how accurately those real measurements
quantify that state and search for any biases that may have been introduced.
Subsequently, it may be possible to use further simulated observations to
examine the modifications that could be made to the real observations or
data reduction procedure in order to improve their quality. An example of
such a process is presented in Sect. 14.3.6.

Similarly, if one has calculated a realistic N -body model that makes some
kind of prediction about a quantity which can potentially be observed in a
globular cluster, it is important to examine whether it is feasible to search for
that signature with presently available facilities. Simulated observations, in
which the capabilities of a given telescope and/or instrument are incorporated,
can provide such information, and also allow one to assess the complexity of
such observations along with the time allocation requirements for them to be
carried out.

Conducted with due care and attention, simulated observations of realistic
N -body models can be an extremely powerful tool for both modellers and
observers.

14.3 Case Study: Massive Star Clusters
in the Magellanic Clouds

The above discussion is quite general, and many of the points are best il-
lustrated via a specific case study. For the remainder of this chapter we will
therefore examine recent work concerning the evolution of globular clusters
in the Large and Small Magellanic Clouds (LMC and SMC, respectively)
(Mackey et al. 2007, 2008a).

Before proceeding to this, however, it is worth noting that another excellent
example of realistic N -body modelling, with a different focus to the case study
considered below, is the recent ‘work concerning’ the old Galactic open cluster
M67 by Hurley et al. (2005), in which they investigate the evolution of the
cluster structure and mass loss, along with formation mechanisms and proper-
ties of blue stragglers, evolution of the cluster colour–magnitude diagram and
various stellar populations, and modification of the cluster luminosity func-
tion due to external tidal forces. Some aspects of this work are discussed in
Chap. 12.
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14.3.1 Observational Background: The Radius–Age Trend

The star cluster systems belonging to the LMC and SMC (which are two close
companion galaxies of the Milky Way) are of fundamental importance in star
cluster astronomy, particularly the field of star cluster evolution. While the
Galactic system provides the nearest globular cluster ensemble, from an obser-
vational point of view these objects are not ideal for studying cluster evolution
because of their uniform ancient nature (ages ∼ 10 − 13 Gyr). Therefore, we
can determine very well the end-points of massive star cluster evolution, but
must infer the complete long-term development that brought them to these
observed states.

In contrast, the LMC and SMC possess extensive systems of star clusters
with masses comparable to the Galactic globulars, but crucially of all ages:
106 ≤ τ ≤ 1010 yr. These systems are hence the nearest places we can observe
direct snapshots of cluster development over the last Hubble time.

Elson and her collaborators were among the first to consider the struc-
tural evolution of massive star clusters in the LMC (Elson, Fall & Freeman
1987; Elson, Freeman & Lauer 1989; Elson 1991, 1992). They measured radial
brightness profiles and derived structural parameters for a sample of clusters
covering a wide range of ages, to search for evolutionary trends. The most
striking relationship they discovered concerns the sizes of the cluster cores.3

The spread in core radius was observed to be a strongly increasing function of
age, in that the youngest clusters possessed compact cores with rc ∼ 1−2 pc,
while the oldest clusters exhibited a range 0 ≤ rc ≤ 6 pc (cf. Fig. 14.1). They
did not observe any significant trend between cluster mass and radius. The
radius-age trend provided intriguing evidence that our understanding of mas-
sive star cluster evolution may be incomplete, since quasi-equilibrium models
of star cluster evolution do not predict large-scale core expansion over the
cluster lifetime (see e.g., Meylan & Heggie 1997).

The advent of the Hubble Space Telescope has allowed this problem to
be re-addressed observationally in significantly more detail than was possible
with ground-based facilities. HST imaging can resolve LMC and SMC star
clusters (at distances of ∼ 50 and ∼ 60 kpc, respectively) even in their inner
cores, so that star counts may be conducted to very small projected radii
and very accurate surface density/brightness profiles constructed. Work with
HST observations, using the Wide Field Planetary Camera 2 (WFPC2) and
Advanced Camera for Surveys (ACS), has recently been conducted (Mackey &
Gilmore 2003a,b; Mackey et al. 2008b). These authors have a combined sample
consisting of 84 LMC and 23 SMC clusters, covering the full age range and
with masses generally comparable to those of the Galactic globular clusters.
For the interested reader, full details of the data reduction, construction of
surface brightness profiles, and measurement of structural parameters may be
found in Mackey & Gilmore (2003a) and Mackey et al. (2008b).

3As parametrised by the observational core radius, rc, defined in this case as the
radius at which the surface brightness is half its central value.
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Fig. 14.1. Core-radius versus age for massive stellar clusters in the Large and Small
Magellanic Clouds. This figure includes all clusters from the HST/WFPC2 measure-
ments of Mackey & Gilmore (2003a,b) as well as the HST/ACS measurements of
Mackey et al. (2008b)

The resulting core-radius versus age diagram is shown in Fig. 14.1. This
represents the most up-to-date information available regarding the radius-age
trend in the LMC and SMC cluster systems. The upper envelope is very well
defined for all ages up to a few Gyr. At older times than this, the full range of
core radii observed for massive stellar clusters is allowed. In fact, the situation
is even more dramatic than appreciated in earlier studies. Several of the oldest
clusters in the sample lie off the top of the diagram: the Reticulum cluster in
the LMC, with age τ ∼ 12− 13 Gyr and rc ∼ 14.8 pc; and Lindsay 1 and 113
in the SMC, with τ ∼ 9 Gyr and rc ∼ 16.4 pc, and τ ∼ 5 Gyr and rc ∼ 11
pc, respectively. Hence the range for the oldest clusters is 0 ≤ rc ≤ 17 pc.

It is interesting to note that the observed distribution of core radii for
the oldest clusters is quite consistent with that observed for Galactic globular
clusters. Indeed, if only globular clusters in the remote outer Milky Way halo
are considered (where destructive tidal processes, particularly affecting diffuse
clusters, are minimized), the distributions match very closely indeed (Mackey
et al. 2008a). It is worth emphasizing, however, that the radius-age relation-
ship cannot be inferred solely from the observations of the Galactic globular
clusters – the full trend is only evident when the age spectrum present in the
LMC and SMC cluster systems is exploited.
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14.3.2 Realistic N-Body Modelling of Magellanic Cloud Clusters

The key question resulting from these observations concerns the origin of the
radius-age trend. This is important for our understanding of star cluster evo-
lution – since standard models never predict an order-of-magnitude expansion
of the cluster core radius over the cluster lifetime, these models are possibly
incomplete.

There exist a number of interpretations of the radius-age diagram. The
most straightforward (which we consider here) postulates that massive star
clusters (or at least the long-lived variety) are always formed as compact ob-
jects, and that some, for an as-yet unidentified reason, expand for the duration
of their lives while the remainder do not. In this case we are searching for a
dynamical explanation of the trend – a problem ideally suited to large-scale
realistic N -body modelling.

A number of possible dynamical mechanisms for the radius-age trend have
previously been proposed and investigated; however, none can fully explain
the observed distribution of clusters. For example, a strongly varying intra-
cluster IMF (Elson et al. 1989) or binary star fraction (Wilkinson et al. 2003)
have been ruled out as viable explanations, as have the effects of a temporally
varying tidal field, such as that which a cluster on a highly elliptical orbit
might feel (Wilkinson et al. 2003). In the present case study, we consider
the effects of a population of stellar-mass black holes (BHs). Usually, such
objects are assumed to receive a large velocity kick at formation in a supernova
explosion, which means they rapidly escape from their cluster. Therefore, we
consider here the effects if a star cluster can somehow retain a fraction of these
BHs. Large-scale realistic N -body modelling has been conducted to investigate
this question, using the nbody4 code (Mackey et al. 2007, 2008a).

As discussed in more general terms earlier in this chapter, there are two
key aspects to conducting realistic N -body simulations. The first is to develop
model clusters that have properties as similar as possible to those observed
for the real LMC and SMC clusters. The second concerns the data analysis.
Since we are trying to reproduce an observationally defined trend, we must
obtain measurements from the simulations that are directly comparable to the
measurements which were determined for the real clusters. The most logical
way to do this is to perform simulated observations of the simulated clusters,
in just the manner that the genuine observations were conducted. This will
be discussed in more detail in Sect. 14.3.4, below.

Returning then to the question of setting up realistic models, we must
first identify the key characteristics of the youngest LMC and SMC clusters.
These are summarized in Fig. 14.2. All the observed young LMC and SMC
clusters have profiles with cores (rather than cusps) – even the ultra-compact
cluster R136 exhibits a small core (see e.g. the detailed discussion in Mackey
& Gilmore 2003a, and the references therein). The radial brightness profiles of
the youngest clusters are well fit by models of the form (Elson, Fall & Freeman
1987; EFF models hereinafter):
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Fig. 14.2. Properties of the youngest massive clusters observed in the LMC and
SMC. Structural data are taken from Mackey & Gilmore (2003a,b), while the central
density and total mass estimates are taken from McLaughlin & van der Marel (2005)

μ(r) = μ0

(

1 +
r2p
a2

)−γ/2

, (14.1)

where rp is the projected radius (i.e. the radius on the sky), μ0 is the central
surface brightness, γ determines the power-law slope of the fall-off in surface
brightness at large radii, and a is the scale length. It is straightforward to
show that this latter parameter is related to the core-radius by:

rc = a(22/γ − 1)1/2 . (14.2)

Typical values for these structural parameters in young LMC and SMC clus-
ters are rc ≤ 2 pc and γ ∼ 2.6. Excluding R136, the young LMC and SMC
clusters generally have central densities in the range 1.6 ≤ log ρ0 ≤ 3.0, and
total masses in the range 4 ≤ logMtot ≤ 5. R136 is the youngest cluster in the
sample, ∼ 3 Myr, and also has the greatest central density with log ρ0 ≈ 4.8.

Given these observational constraints, we generate model clusters in virial
equilibrium according to an EFF profile with γ = 3 – this is the member of
the EFF family of models closest to γ ∼ 2.6, which possesses analytic expres-
sions for the radial dependence of the enclosed mass and isotropic velocity
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dispersion. Full details of the generation procedure may be found in Mackey
et al. (2008a).

Using the IMF of Kroupa (2001), we assign a range of masses to the stars
in a model cluster according to the multiple-part power law

ξ(m) ∝ m−αi , (14.3)

where ξ(m)dm is the number of single stars falling in the mass interval m to
m+ dm, and the exponents αi are:

α0 = +0.3 ± 0.7, 0.01 ≤ m/M� < 0.08
α1 = +1.3 ± 0.5, 0.08 ≤ m/M� < 0.50 (14.4)
α2 = +2.3 ± 0.3, 0.50 ≤ m/M� < 1.00
α3 = +2.3 ± 0.7, 1.00 ≤ m/M�.

Kroupa (2001) derived his IMF from a large compilation of measurements
from young stellar clusters, including many in the LMC. This is in contrast
with many other widely used IMFs – the Kroupa (2001) IMF is therefore the
most suitable for the present N -body modelling.

We impose a stellar mass range 0.1–100M� for our model clusters. The
lower mass limit is set by the lowest mass stars for which stellar evolution
routines are incorporated in nbody4, while the upper limit is consistent with
the observations of very young massive star clusters. Note that the lower mass
limit means that in practice only the exponents α1–α3 in the IMF described
above are utilized.

Selection of the IMF described above, along with the requirement that
our model clusters have masses typical of those of young LMC and SMC
clusters (Fig. 14.2), allows the total number of stars in each given model to
be assigned. For all present simulations, N ∼ 105 stars, which gives typical
initial total cluster masses of Mtot ∼ 56 000M� (i.e., logMtot ∼ 4.75).

In the interest of maintaining a high degree of realism in the simulations,
model clusters are evolved in a weak external tidal field rather than in iso-
lation. This external field is incorporated by imposing the gravitational po-
tential of a point-mass LMC with Mg = 9 × 109M�, and placing the clusters
on circular orbits of galactocentric radius Rg = 6 kpc. Adopting a point-mass
LMC is a significant over-simplification; however, as described by Wilkinson
et al. (2003), the gradient of this potential is within a factor of 2 of that in the
LMC mass model of van der Marel et al. (2002) at the assigned orbital radius.
In any case, the relatively weak tidal field of the LMC does not significantly
affect the core-radius evolution of its massive stellar clusters (Wilkinson et al.
2003).

Incorporating a tidal field in the N -body modelling serves two important
purposes. First, it allows the gradual evaporation of stars from a simulated
cluster to be modelled in a self-consistent fashion, so that the rates of evapo-
ration between different models with the same external potential and escape
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criterion may be easily compared. Second, it lets us impose a natural scaling
between N -body units, in which the integration is computed, and physical
units, which we use to compare the model cluster to observational results. In
particular, the length scaling controls the physical density of the cluster and
hence the physical time-scale on which internal dynamical processes occur.
The tidal radius, rt, of a star cluster (mass Mcl) on a circular orbit of radius
Rg in the external point-mass potential of a point-mass galaxy (mass Mg)
may be estimated from the relationship (King 1962):

rt = Rg

(
Mcl

3Mg

) 1
3

. (14.5)

The initial tidal radius of the cluster, estimated via (14.5), is used to determine
the length-scale conversion. It is important to check that this results in cluster
densities consistent with those observed for young LMC and SMC clusters –
we quantify this more carefully below.

Since we wish to examine the dynamical effects of populations of stellar-
mass black holes on star cluster evolution, it is important to consider how such
objects may be incorporated naturally into our N -body simulations. The most
unambiguous method is to generate black holes from the supernova explosions
of the most massive stars in the cluster. nbody4 includes such formation in its
stellar evolution routines; however, we added small modifications so that the
progenitors, masses, and natal kicks of the generated BHs could be controlled.
To ensure a sizeable population of BHs, we form one whenever a star with an
initial mass greater than 20M� explodes. For a cluster with N = 105 stars
and a Kroupa (2001) IMF with an upper mass limit of 100M�, this results in
NBH = 198 BHs. When a BH is formed, we assign it a mass randomly selected
from a uniform distribution in the range 7 < MBH < 13M�, so that the mean
mass is 10M�. This process is again undoubtably a simplification; however,
the mass characteristics of the progenitors and BHs are reasonably consistent
with theoretical expectations (see e.g., Zhang, Woosley & Heger 2007) as well
as observational evidence (see e.g., Casares 2006).

The natal kicks which the BHs are given are very important. A large kick
(a few hundred km s−1) is usually used for both black holes and neutron stars.
This generally means no BHs are retained in a typical cluster, which might
have an escape velocity of 10–20 km s−1. In order to control the retention
fraction we modified nbody4 so that the natal kicks given to generated BHs
could be easily controlled, and varied from run to run.

It is also important to specify the metallicity of the model clusters, since
this parameter strongly affects the stellar evolution and hence the mass loss
at early times in the N -body simulations (see e.g. Hurley et al. 2004). In
the present example we select solar metallicity (Z = 0.02) to be consistent
with observations of young clusters in the Magellanic Clouds. However, it is
important to be aware that since there is a strong age-metallicity relation
in both Clouds, there is a metallicity gradient across the radius-age diagram
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(i.e. the oldest clusters are also very metal poor). In any ensemble of N -
body runs seeking to explain the radius-age trend, the significance of this
fact should be investigated (although we do not consider it any further in the
present example).

One additional key aspect of young LMC and SMC clusters is that those
which have been observed in detail generally exhibit some degree of mass
segregation – that is, the most massive stars in a given cluster are preferentially
located near the centre of that cluster. For example, mass segregation has
been observed in the LMC clusters NGC 1805 and NGC 1818 (de Grijs et al.
2002a,b) and R136 (Malumuth & Heap 1994; Brandl et al. 1996; Hunter et al.
1995, 1996), as well as the SMC cluster NGC 330 (Sirianni et al. 2002). It does
not necessarily follow from these observations that mass segregation occurs in
all young LMC and SMC clusters, and nor is it clear whether the segregation
is primordial or dynamical in the clusters where it has been found; however,
mass segregation is clearly an important factor, which we must consider in
our models.

In order to produce mass-segregated clusters in a self-consistent fashion
(i.e. close to virial equilibrium, with all members having appropriate velocities)
a cluster is first generated as described above (with no mass segregation). We
then implement a mass-truncation, setting all stars in the cluster with masses
greater than 8M� to have mass 8M�. Next, the cluster is evolved dynami-
cally using nbody4 but with the stellar evolution routines turned off. Hence
the cluster begins to dynamically relax and mass segregate. The degree of
primordial mass segregation is controlled by the length of time for which the
cluster is “pre-evolved”. The truncation limit of 8M� is selected so that the
pre-evolution can extend for a reasonable period (a few hundred Myr) with-
out the most massive stars sinking to the cluster centre, forming a collapsed
core, and ejecting each other through close interactions. Once the desired pre-
evolution time is reached, the simulation is halted, the mass-truncated stars
replaced with their original masses, and the resulting cluster taken as the
input for the simulation proper.

The truncation and replacement process introduces some small inconsis-
tencies in the velocities of some stars, once the simulation proper is started.
However, these are small, and are erased by dynamical processes within a few
crossing times. In addition, during the pre-evolution phase, some stars escape
from the cluster. This process is very gradual, however, and even clusters with
long pre-evolution times (several hundred Myr) only lose a few per cent of their
mass. Since the scaling of all models is set by (14.5), which varies as the cube
root of the cluster mass, the differences in scaling between non-segregated and
primordially segregated clusters are tiny.

It is important to check whether this artificial mass segregation process
produces clusters that have properties comparable to the observed mass-
segregated young LMC and SMC clusters. We do this by comparing simulated
observations of the model clusters with the genuine cluster observations. This
is considered in more detail in the next section, and in Sect. 14.3.7.
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14.3.3 Summary of N-Body Runs

With the initial conditions specified as described above, four N -body simula-
tions are required to address the question under consideration – namely the
dynamical effects of a population of stellar-mass black hole remnants on mas-
sive star cluster evolution – at a basic level. The parameter space of interest is
spanned by two types of clusters – those with no primordial mass segregation
and those with a strong degree of primordial mass segregation. In each of
these types, we consider evolution with no black holes (that is, where the na-
tal kick is large so the retention fraction is zero) and a significant population
of black holes (that is, where the natal kick is zero so the retention fraction
is unity).

These four runs cover the extreme limits of the parameter space we aim
to investigate, and hence are expected to cover the extreme limits of clus-
ter evolutionary behaviour. Subsequent to their completion, it is sensible to
check this is indeed the case, by adding further runs which sample interme-
diate regions of the parameter space (e.g. a cluster with only moderate mass
segregation, or a black hole retention fraction around 0.5). Although such runs
have been carried out, we will not consider them in any detail here.

The properties of the four N -body runs are listed in Table 14.1. Note
that for Runs 3 and 4, “strong mass segregation” is rather difficult to de-
fine numerically; however, a pre-evolution duration of ∼ 450 Myr is adequate
to reproduce observational results of mass segregation in young Magellanic
cloud clusters. This aspect is discussed in more detail in Sect. 14.3.7 below.
Each model is run until late times (Tmax > 10 Gyr), which match the ages of
the oldest Magellanic Cloud globular clusters. Each such run took approxi-
mately 2 weeks of full-time calculation on the GRAPE-6 at the Institute of
Astronomy in Cambridge. The first week takes any given run to an age of
∼ 1.5 Gyr after which time the computation becomes rather swifter, mainly
due to decreasing particle number and much less demanding stellar evolution
calculations.

We selected data for output every 1.5 Myr at ages less than 100 Myr, and
every 15 Myr thereafter. This allowed close examination of the early phases

Table 14.1. Details of N -body runs and initial conditions. Each cluster begins with
N0 stars with masses summing to Mtot, and initial central density ρ0. Initial cluster
structure is “observed” to obtain rc and γ. Each model is evolved until Tmax

Name N0 log Mtot log ρ0 rc γ Initial mass Black hole Tmax

(M�) (M� pc−3) (pc) segregation kicks (Myr)

Run 1 100 881 4.746 2.31 1.90 2.96 None Large 16 996
Run 2 100 881 4.746 2.31 1.90 2.96 None Zero 10 668
Run 3 95 315 4.728 4.58 0.25 2.33 452 Myr Large 11 274
Run 4 95 315 4.728 4.58 0.25 2.33 452 Myr Zero 10 000
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of cluster evolution and suitable resolution at all times to consider in detail
the development and evolution of any black hole populations. Typically, each
∼ 10 Gyr, N ∼ 105 star run takes up ∼ 10 Gb of space on disk. This can be
reduced considerably by compressing the output for storage and backup.

For each run, we measured the initial cluster mass, central density, and
the structural parameters rc and γ – these are all listed in Table 14.1. The
structural parameters were derived from simulated observations, as discussed
in Sect. 14.3.4, below. It is worth re-emphasizing how closely these correspond
to the observed quantities for the youngest massive clusters in the Magellanic
clouds. This can be seen explicitly by comparing the values listed in Table 14.1
with the plots in Fig. 14.2. In addition, the evolution of the central density
(ρ0) over the first tens of Myr for Runs 1 and 3 is plotted in Fig. 14.3.

The model clusters with no primordial mass segregation have rc ∼ 1.9 pc,
γ ∼ 3, and log ρ0 ∼ 2.3. These clusters therefore appear very similar to a
number of Magellanic Cloud clusters with ages of ∼ 20 Myr. In contrast, the
heavily mass-segregated model clusters have much smaller cores and higher
central densities, with rc ∼ 0.3 pc and log ρ0 ∼ 4.8. They also have flatter
power-law fall-offs, with γ ∼ 2.3. In this respect, they look very similar to
the very compact massive young LMC cluster R136, which has an age of
∼ 3 − 4 Myr.

Fig. 14.3. Early evolution of the central density ρ0 for Runs 1 and 3 (solid lines),
compared with the observations for young LMC clusters (points). Run 1 has no
primordial mass segregation while Run 3 is heavily segregated. Run 3 looks very
similar to R136 at early times but by a few tens of Myr looks more like other
observed young LMC and SMC clusters, and indeed rather similar to Run 1



364 A. D. Mackey

14.3.4 Simulated Observations of Core Radius Evolution

As described in Sect. 14.2, a key advantage of running realistic N -body simu-
lations is that they allow the opportunity to conduct simulated observations
on the models. In particular, this is a vital ingredient if the problem under
investigation is defined observationally. If this is the case, it is essential to
ensure that whatever measurements obtained from the N -body modelling are
directly comparable to those determined observationally.

In our present case study, we are investigating the origin of the radius-
age trend in the LMC and SMC star cluster systems. This trend is defined
observationally, through measurements of cluster core radii. To determine
whether our N -body simulations have been successful in reproducing the trend
or not, a directly comparable parameter must be obtained from them. The
most unambiguous method of achieving this is by passing the N -body data
through as similar a process as possible to that which generated the observed
measurements.

The first step is to identify and account for the limitations of the cluster
observations. In any given LMC or SMC cluster in the sample displayed in
Fig. 14.1, only a fraction of the stars in the cluster were imaged and used
to produce the brightness profiles from which core-radius measurements were
made. There are two primary reasons for this. First, the HST field of view
(whether it be with WFPC2 or ACS) is not large enough to cover the full
spatial extent of an LMC or SMC cluster. The core is imaged but the radial
profile is cut off typically at ∼ 20 pc, much less than the nominal tidal radius
of roughly ∼ 40–50 pc .

Second, the exposure times are too short to see the faintest stars in the
cluster, and too long to allow accurate measurement of the brightest stars.
This point is illustrated in Fig. 14.4. The displayed colour-magnitude diagram
(CMD) is from ACS imaging of 47 Tuc, a bright Galactic globular cluster. The
main sequence is clearly visible, as is the turn-off. The image exposure times
were not long enough to measure stars fainter than ∼6 mag below the turn-off.
A large fraction of the stars in 47 Tuc are fainter than this (for example, no
white dwarfs were observed), but would not be included in any star counts used
to construct a brightness profile from these observations. At the bright end, the
data are cut off just above the sub-giant branch. Brighter stars (i.e. all the red
giant branch and horizontal branch stars) do appear on the images; however,
the exposure times were long enough that these objects were saturated on the
CCD. That is, the pixels imaging these stars have received too many photons
and the signal has overflowed into neighbouring areas. Accurate photometry
cannot be done above a certain level of saturation, hence the bright cut-off
limit on the CMD in Fig. 14.4. None of the saturated stars would be counted
in a radial brightness profile either.

Exactly similar processes apply to the LMC and SMC clusters we are
trying to model. Each has a bright and faint cut-off determined by the expo-
sure times of the imaging. These are illustrated in Fig. 14.4, for the complete
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Fig. 14.4. Left: Colour-magnitude diagram of the Galactic globular cluster 47 Tuc
from HST/ACS imaging. The measured signal-to-noise ratios for the detected stars
are indicated in several places. The bright and faint cut-offs are evident. Right:
Bright and faint stellar detection limits on the HST/WFPC2 and ACS images of
LMC and SMC clusters used for the measurements presented in Fig. 14.1. LMC
clusters are blue circles, while SMC objects are magenta triangles. Filled symbols
represent the WFPC2 imaging described in Mackey & Gilmore (2003a,b), while open
symbols are the ACS imaging from Mackey et al. (2008b). Clusters are split into
four age bins, shown with solid vertical lines. Within each bin, the mean bright and
faint detection limits are marked by dashed lines, while the approximate maximum
scatter about each mean is marked by a pair of dotted lines

sample. The clusters are split into four age bins, delineated on the plot with
solid vertical lines. Within each of these, the mean bright and faint detection
limits are marked with dashed lines, and the approximate maximum scatter
about these means with dotted lines. From this figure it is clear that the bright
and faint limits, and hence the portion of the mass function sampled by the
observations, vary systematically with cluster age. This is due to the fact that
observations of star clusters in the LMC and SMC are commonly aimed at
targeting stars near the main-sequence turn-off. Consequently, the required
exposure time increases with cluster age, meaning that both the brighter and
the fainter detection limits decrease with age.

To observe our model clusters, we pass the N -body data at each out-
put time through a measurement pipeline essentially identical to that used
to obtain structural quantities for the real LMC and SMC cluster sample
(full details of the observational pipeline may be found in Mackey & Gilmore
2003a). At a given output time, the luminosity and effective temperature of
each star in the cluster is first converted to magnitude and colour, using the
bolometric corrections of Kurucz (1992) (see also e.g., Hurley et al. 2005).
We also convert the position and velocity of each star to physical units using
the appropriate length-scale and velocity factor (see Sect. 14.3.2). With this
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completed, we next impose the bright and faint detection limits appropriate
to the output time (these are the dashed mean limits in Fig. 14.4). This leaves
an ensemble of stars with which to construct a surface brightness profile. We
project the three-dimensional position of each star onto a plane (to mimic the
observation of a cluster projected onto the sky), construct annuli of a given
width about the cluster centre, and calculate the surface brightness in each
annulus. For consistency with the observational pipeline, we use a variety of
annulus widths so that both the bright inner core and the fainter outer regions
of the cluster are well measured. Measurements are truncated at a radius com-
mensurate with that imposed by the HST field of view, as discussed above.
We next fit an EFF model to the resulting surface brightness profile, and from
this model derive the structural parameters, in particular the core radius. To
reduce noise we repeat this process for each of the three orthogonal planar
projections at each output time and average the results.

14.3.5 Results from the Simulations

In this chapter, we are primarily concerned with investigating the processes
involved in running realistic N -body simulations and analysing the resulting
data, illustrated through the examination of a case study. Therefore, we will
not delve deeply into the results of the four N -body runs themselves (the inter-
ested reader is referred to Mackey et al. (2008a) for full details). Nonetheless,
it is interesting to take a moment to consider these results in the context of
the radius-age trend described in Sect. 14.3.1.

Because we have taken care to construct models where N is sufficiently
large that no scaling with N is necessary to interpret the output, and be-
cause we have taken care to obtain measurements closely mimicking the real
observations, it is legitimate to directly plot the core-radius evolution of our
N -body models over Fig. 14.1. This is shown in Fig. 14.5 for Runs 1 and 2,
and Fig. 14.6 for Runs 3 and 4.

The simplest model is Run 1, which is not primordially mass-segregated,
and in which black holes formed in supernova explosions receive a large natal
kick, ejecting them almost immediately from the cluster. The retention frac-
tion is thus zero. As could be expected, the evolution follows the standard
path expected for an ordinary globular cluster (see e.g., Meylan & Heggie
1997). There is an initial phase of violent relaxation and mass loss due to stel-
lar evolution, which lasts for the first ∼100 Myr. This phase is hardly reflected
in the core-radius evolution, because as there is no primordial mass segrega-
tion, the mass loss is distributed widely over the cluster. The remainder of
the cluster evolution consists of a slow contraction of the core as dynamical
mass segregation is established, and the cluster moves towards core collapse,
which happens near the end of the run at ∼15 Gyr.

Run 2 is identical, except for the fact that natal black hole kicks are set
to be zero, so that the retention fraction is one. This results in a population
of 198 stellar mass black holes within the cluster. Initially, the core radius
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Fig. 14.5. Core-radius evolution of N -body Runs 1 and 2. Both runs have no
primordial mass segregation and start from identical initial conditions. The only
difference between them is the retention fraction of stellar-mass black holes (zero and
one, respectively). Run 1 evolves exactly as expected, with the main trend being a
slow contraction in rc as the cluster relaxes and moves towards core collapse. In stark
contrast, Run 2 evolves very similarly up to a point, after which strong expansion
in the core radius is observed. The presence of 198 stellar-mass black holes in this
cluster thus leads to strikingly different core radius evolution

evolution appears identical to that of Run 1. The mass loss phase passes and
relaxation processes set in. However, starting at about ∼500 Myr, the core
radius of Run 2 begins to expand dramatically. This is due to the dynamical
influence of the black holes. These objects, because they are dark, are not
included in the core-radius measurements (they fall far below the faint cut-off
on the CMD). All we can see is how the stars which are included in the profile
calculations are affected. After their formation, and a few tens of Myr of stellar
evolution within the cluster, the black holes are by far the most massive cluster
members. They therefore sink rapidly to the cluster centre via dynamical mass
segregation, and, after a few hundred Myr, form a compact black hole core.
The densities within this core are such that close encounters between BHs
are frequent, and soon black hole binaries are formed. Encounters between
binary BHs and single BHs, and between binary BHs and other binary BHs
scatter single BHs out of the core, which then sink back in again via mass
segregation. Since an individual BH may undergo this process a number of
times, significant energy is transferred to the core stars through the repeated
mass segregation. In addition, in very strong encounters, BHs are ejected from
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Fig. 14.6. Core-radius evolution of N -body Runs 3 and 4. Both runs have strong
primordial mass segregation and start from identical initial conditions. The only
difference between them is the retention fraction of stellar-mass black holes (zero
and one, respectively). Compared with Runs 1 and 2, there is strong early expan-
sion due to the concentrated central mass loss. Subsequently, Run 3, without black
holes, begins to mass segregate and contract, whereas Run 4 undergoes continued
expansion due to the dynamical effect of its black hole population

the cluster. By the end of the run, only about 30% of the original population
remains. This ejection process serves as an additional heating mechanism.

In contrast to Runs 1 and 2, the primordially mass-segregated Runs 3 and
4 expand dramatically at early times. Given that these two runs have the same
IMF as Runs 1 and 2, this early expansion must be a direct result of their
different initial structure. Unlike in Runs 1 and 2, where the early mass loss
from stellar evolution is spread throughout the cluster, in Runs 3 and 4 it is
heavily concentrated in the core, which in turn reacts with strong expansion.
This expansion lasts for the first ∼250 Myr, by which time the highest mass
stars in the cluster have completed their evolution, and the stellar mass-loss
rate has been significantly reduced. After this point, the evolution follows very
similar paths to those for Runs 1 and 2. The model with no black hole retention
(Run 3) gradually begins to dynamically relax, and mass segregation sets in
causing slow contraction. Because this cluster expanded at early times, it is
less dense than Run 1, and hence its relaxation time is longer. Thus, it does
not reach a state of core collapse by the end of the simulation. In contrast, Run
4, where the black hole retention fraction is unity, undergoes core expansion
for the full duration of its evolution. As in Run 2, the BHs segregate to the
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centre of the cluster and form a compact core by ∼ 500 Myr. This initiates
BH–BH interactions, inducing the expansion. Because of its additional early
expansion, Run 4 reaches larger core radii than Run 2 at late times, evolving
off the top of the figure to rc ∼ 12 pc.

This set of four runs hence demonstrates that we can cover all regions of
the observed cluster distribution in the radius-age plane simply by varying two
basic parameters within the ranges constrained by observation – the degree of
initial mass segregation in a cluster, and the retention fraction of stellar mass
black holes. Additional runs have been performed, which demonstrate that,
as should be expected, models with intermediate degrees of mass segregation,
or an intermediate BH retention fraction, evolve somewhere between the four
extremes modelled in the present example.

14.3.6 More Detail on Simulated Observations of rc

As well as directly addressing the question of the origin of the radius-age trend,
conducting simulated observations of the four N -body models described above
also allows us to investigate the quality of the data reduction carried out on
the original observational data.

For example, when we examined the bright and faint saturation limits
present in the imaging and constructed Fig. 14.4, it became clear that these
limits vary systematically with cluster age. We were able to implement this
variation in our simulated observations of the N -body clusters, and hence
account for any systematic effect on the measurement of the core radius.
However, it also became clear that at any given age there is considerable
scatter in the bright and faint limits between clusters – something we did
not account for in the simulated observations. This raises the question as to
whether this cluster-to-cluster variation at similar ages introduces significant
scatter into the observed distribution of clusters on the radius-age diagram.
Furthermore, if it does, is it possible to reduce this scatter by re-analysing the
observational data and artificially imposing uniform bright and faint limits at
a given age.

To investigate these questions, we re-calculated the core-radius evolution
of the N -body clusters using simulated observations with new bright and faint
limits implemented in place of the mean limits previously adopted. In these
new calculations, we used the “maximum scatter” limits marked in Fig. 14.4 –
in one set we used the brightest pair of limits at any given age and in a second
set we used the faintest pair of limits at any given age. The resulting evolution
is plotted in Fig. 14.7, along with the evolution derived using the mean bright
and faint limits.

It can be seen from this figure that in all four runs for the majority of
the evolution the selected bright and faint limits make little difference to the
calculated core radius, at least at the level of the cluster-to-cluster scatter
determined to be present in the Magellanic Cloud cluster observations. How-
ever, in the case where a cluster is heavily mass-segregated and where it still
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Fig. 14.7. Core-radius evolution derived from the simulated observations with three
different sets of saturation and faint limits implemented, as indicated in Fig. 14.4.
The black lines represent rc calculated using the mean limits, as in Figs. 14.5
and 14.6, while the magenta lines represent rc calculated using the brightest max-
imum scatter limits, and the green lines represent rc calculated using the faintest
maximum scatter limits. Agreement between the three is excellent, except in the
case where a cluster is mass-segregated and young (so that it still possesses massive
luminous stars)

possesses massive, luminous stars, the adopted bright and faint limits make a
significant difference to the measured core radius.

This result is readily understood. In any given cluster, since we construct
brightness profiles rather than simple stellar density profiles, the presence of
any luminous stars strongly weights the resulting structural calculations. In
particular, when mass segregation is present, the most luminous stars are pre-
disposed to lie near the cluster centre, resulting in a small core radius. Hence,
if the saturation limit is varied in the observations of such a cluster, different
numbers of luminous stars will be included in the calculation, resulting in a
strong variation in the measured rc. This is clearly evident for Runs 3 and
4 at early times in Fig. 14.7, and suggests that the cluster-to-cluster scatter
in saturation limits present in the observational data for the youngest clus-
ters may have introduced significant scatter in the positions of clusters in the
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radius-age diagram for ages up to ∼200 Myr. It would therefore be worthwhile
re-reducing the observational data for clusters younger than this limit, arti-
ficially imposing uniform bright and faint detection limits. With this done,
a major source of scatter in the positions of the youngest clusters on the
radius-age diagram would be removed.

This example shows that while genuine cluster observations define sim-
ulated observations to be carried out on any N -body modelling of these
clusters, additional simulated observations of the N -body models can lead
to improvements in the genuine cluster observations, in an iterative process.
This illustrates one of the key advantages to running direct, realistic N -body
simulations and implementing a sophisticated data reduction procedure.

One additional aspect worth a brief investigation is a comparison between
the measured core-radius (now using the mean bright and faint limits again)
and the core-radius computed internally by nbody4, which one might be
tempted to use rather than proceeding down the more complicated and time-
consuming path of implementing simulated observations.

The core-radius calculated by nbody4 is more correctly termed the den-
sity radius (rd) and is based on a quantity described by Casertano & Hut
(1985), so that rd is defined as the density-weighted average of the distance
of each star from the density centre of the cluster (see e.g., Aarseth 2003).
The local density at each star is computed from the mass within the sphere
containing the six nearest neighbours. This parameter was designed to behave
in a similar manner to the observational core radius; however, as we will see, it
can be strongly biased by particles that would not be included in any genuine
observation aimed at deriving the structural parameters of a cluster.

In Fig. 14.8, comparison between the observational core radius, as calcu-
lated above in Sect. 14.3.4, and the density radius computed by nbody4 is
presented for each of the four runs. For Runs 1 and 3, where black holes are
not retained, the agreement between the two radii is generally satisfactory,
although there is a significant tendency for the density radius to be larger
than the observational core radius. In comparison for Runs 2 and 4 where
black holes are retained, the agreement is very poor indeed, with no correla-
tion between the behaviour of the two radii. The reason for this is simple –
black holes are included in the computation of rd, but not included in the
computation of rc (since they are dark particles). Hence, for Runs 2 and 4 rd

is effectively tracing only the evolution of the black hole sub-system rather
than the distribution of the luminous matter.

Based on this result, it is clear why one should be very careful about
selecting measurements that are directly comparable to any observations being
modelled. If two disparate quantities are compared, the potential for serious
mistakes exists. In the above example, if the density radius from nbody4 had
been taken as a proxy for the observational core-radius instead of making
use of the simulated observations method, the dramatic expansion evident in
Figs. 14.5 and 14.6 may not have been noticed, and an ultimately successful
explanation for the radius-age trend possibly not investigated any further.
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Fig. 14.8. Comparison between the evolution of the core radius rc, derived from
simulated observations, and the density radius rd implemented in nbody4, for each
of the four N -body runs. In each plot, the upper panel shows the evolution of the
two radii (rc in magenta; rd in blue), while the lower panel shows the evolution of
the ratio rc/rd. A ratio of unity is marked with a dashed line. In runs with black
hole populations, the density radius is a poor match to the observational core radius

14.3.7 Simulated Observations of the Initial Mass Segregation

As a final example, it is worth investigating the fact that we can use de-
tailed simulated observations to examine the quality of the initial conditions
we constructed in Sect. 14.3.2, especially for the primordially mass-segregated
models. We have already demonstrated that these model clusters closely re-
semble the youngest massive LMC and SMC clusters in terms of their basic
structural parameters, central densities and masses. However, we would like to
verify that the method used to primordially segregate these clusters produces
mass segregation similar to that observed in genuine objects. Ideally, we would
also like to integrate stellar velocities into the initial conditions (so that we
can see whether the assumption of virial equilibrium is valid); however, unfor-
tunately, suitably detailed internal velocity measurements for young, massive
Magellanic Cloud clusters do not yet exist.

Nonetheless, detailed observations of the radial dependence of the mass
function in such clusters do exist. In particular, there are three studies that
are very useful to us – that of Hunter and collaborators for R136 (Hunter et al.
1995, 1996); that of de Grijs and collaborators for NGC 1805 and NGC 1818
(de Grijs et al. 2002a,b); and that of Sirianni and collaborators for NGC 330
(Sirianni et al. 2002). R136, in the LMC, is the youngest of these four clusters
(∼3 Myr), followed by NGC 1805 (∼10 Myr) and NGC 1818 (∼20 Myr), both
also in the LMC, and finally NGC 330 (∼30 Myr) in the SMC. This age range
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allows us to closely trace the evolution of the primordially mass-segregated
models, by comparing simulated observations to genuine observations reported
in the relevant papers.

Consider first R136, and the work of Hunter et al. (1995, 1996) who used
HST/WFPC2 observations of this cluster to measure the slope of the mass
function as a function of projected radius. Their results are reproduced in
Fig. 14.9. Note that in their work the mass function is represented by a func-
tion ζ(m), which is the number of single stars per logarithmic mass interval, as
opposed to the mass function ξ(m) defined in (14.3). It is straightforward to

Γ

Γ

Fig. 14.9. Mass and luminosity function slopes as a function of projected radius for
various young LMC and SMC clusters, compared with the results from simulated
observations of N -body Run 3. Upper left: Mass function slope Γ as a function of
radius in R136 in the LMC, from Hunter et al. (1995, 1996). Upper right: Luminosity
function slopes β as a function of projected radius for NGC 1805 and NGC 1818, in
the LMC, from de Grijs et al. (2002b). Lower: Mass function slope Γ for NGC 330,
in the SMC, from Sirianni et al. (2002)
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demonstrate that if a function ξ(m) has an exponent −α, then the function
ζ(m), also a power law, has exponent Γ = −α + 1. Hence, the exponent
α3 = 2.3 in the Kroupa (2001) IMF in (14.5) becomes Γ = 1.3 if the mass
function is represented by ζ(m) rather than ξ(m).

Hunter et al. (1996) found some flattening of the mass function slope with
increasingly small radius in R136. Using their annulus widths, together with
the specific bright and faint detection limits they list for each annulus, we di-
rectly simulated their measurements on N -body Run 3, at an output time of
3 Myr. As usual, it is vital to this process that the annulus widths and bright
and faint limits per annulus are exactly reproduced so that directly compa-
rable mass function slopes are derived. Radii in arcseconds were obtained by
applying an LMC distance modulus of 18.5, which defines a scale of 4.116
arcsec per parsec. The N -body results are plotted on the relevant panel in
Fig. 14.9, and clearly closely match the results of Hunter et al. (1996). The
greatest deviation occurs in the innermost part of the cluster, where severe
crowding prevented Hunter et al. (1996) from obtaining a secure measure-
ment. It is also worth noting that the overall mass function slope agrees well.
This value is flatter than the input value (i.e. flatter than Γ = −1.3, which
is the slope in the mass ranges under consideration), because we are only
considering the innermost 15 arcsec of Run 3 to match the radial extent of
the genuine R136 measurements. In the outer regions of the N -body cluster
the mass function slope is somewhat steeper than the input slope, so that
in the entire cluster we obtain Γ = −1.3. Observations of R136 extending to
large projected radii would presumably also find a steeper mass function slope
in its outer regions.

We followed a similar procedure to reproduce the observations of de Grijs
et al. (2002b) for NGC 1805 and NGC 1818 (in this case we used an inter-
mediate output time from Run 3 of 15 Myr), and the observations of Sirianni
et al. (2002) for NGC 330 (we used an output time from Run 3 of 30 Myr).
In each case we adopted the annulus widths and annulus-specific detection
limits listed by the authors. Note that in the case of NGC 1805 and NGC
1818, the slope β of the luminosity function (rather than the mass function)
is measured. This is easily reproduced by using the brightnesses of the N -body
stars rather than their masses.

Our N -body measurements are plotted on the relevant panels in Fig. 14.9.
In all cases, agreement is close. The largest deviation comes in the outer re-
gions of NGC 330, where Sirianni et al. (2002) note that their measurements
are uncertain due to field star contamination (which is not present in the
N -body models, and which is not straightforward to include in simulated ob-
servations). The fact that this more detailed testing of our initial conditions
matches well the best available observations of young LMC and SMC clusters
suggests we have managed to set up sufficiently realistic clusters, and vali-
dates the procedure we used to generate primordial mass segregation in the
N -body models. Once even more detailed observations of young Magellanic
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cloud clusters are available (say, velocity profiles, for example) these will be
able to be incorporated into the initial conditions in a very similar manner.

14.4 Summary

Realistic large-scale N -body modelling of low-mass globular clusters, such
as those found in the LMC and SMC, is now feasible and routinely carried
out. This is mainly due to the advent of special purpose hardware combined
with the ever-increasing sophistication of leading N -body codes, which now
incorporate all the major physical processes that occur in star clusters. Direct
modelling of typical mass globular clusters is still an order of magnitude out of
reach (this is the so-called million body problem); however, within a few years
this goal should be reached. The next generation GRAPE machine will shortly
be in production (GRAPE-DR), and it is expected that this will provide the
required order of magnitude leap. Furthermore, exciting new code develop-
ments are taking place. For example, Church (PhD dissertation, University
of Cambridge) includes live stellar evolution in an N -body code (as opposed
to stellar evolution calculated from analytic formulae). Borch, Spurzem &
Hurley (2007) are associating spectral libraries with evolving stars in N -body
clusters. These will allow new levels of sophistication and realism in both the
models themselves and the types of simulated observations it will be possible
to carry out.

This chapter has provided an introduction to what is presently possible
within the field of realistic N -body simulations and a general description of
various aspects of the philosophy and methodology required for successful
simulations and data analysis. A detailed example has demonstrated how the
interaction between observation and modelling is essential throughout the
process of applying realistic large-scale N -body simulations to real systems.
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15.1 Introduction

The formation and evolution of supermassive black hole (SMBH) binaries dur-
ing and after galaxy mergers is an important ingredient for our understanding
of galaxy formation and evolution in a cosmological context, e.g. for predic-
tions of cosmic star formation histories or of SMBH demographics (to predict
events that emit gravitational waves). If galaxies merge in the course of their
evolution, there should be either many binary or even multiple black holes, or
we have to find out what happens to black hole multiples in galactic nuclei,
e.g. whether they come sufficiently close to merge resulting from emission of
gravitational waves, or whether they eject each other in gravitational slingshot
interactions.

According to the standard theory, the subsequent evolution of the black
holes is divided in three successive stages (Begelman, Blandford & Rees 1980).
1. Dynamical friction causes a transfer of the black holes’ kinetic energy to
the surrounding field stars, and the black holes spiral to the centre where they
form a binary. 2. While hardening, the effect of dynamical friction reduces and
the evolution is dominated by superelastic scattering processes, that is, the
interaction with field stars closely encountering or intersecting the binaries’
orbit, thereby increasing the binding energy. 3. Finally, the black holes coalesce
through the emission of gravitational radiation, potentially detectable by the
planned space-based gravitational wave antennae LISA. For a more detailed
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account of the state of research in this field, see Milosavljević & Merritt (2001,
2003); Makino & Funato (2004); Berczik, Merritt & Spurzem (2005). In our
context the problem will be used as an example, where relativistic dynamics
becomes important during the evolution of an otherwise classical Newtonian
N -body system.

15.2 Relativistic Dynamics of Black Holes
in Galactic Nuclei

Relativistic stellar dynamics is of paramount importance for the study of a
number of subjects. For instance, if we want to have a better understanding of
what the constraints on alternatives to supermassive black holes are, in order
to explore the possibility of ruling out stellar clusters, one must do detailed
analysis of the dynamics of relativistic clusters. Furthermore, the dynamics
of compact objects around an SMBH or multiple SMBHs in galactic nuclei
requires the inclusion of relativistic effects. Our current work deals with the
evolution of two SMBHs, in bound orbit, and looks at the phase when they
get close enough to each other that relativistic corrections to Newtonian dy-
namics become important, which ultimately leads to gravitational radiation
losses and coalescence.

Efforts to understand the dynamical evolution of a stellar cluster in
which relativistic effects may be important have already been made by Lee
(1987), Quinlan & Shapiro (1989, 1990) and Lee (1993). In the earlier work,
1PN and 2PN terms were neglected (Lee 1993) and the orbit-averaged for-
malism (Peters 1964) used. We describe here a method to deal with deviations
from Newtonian dynamics more rigorously than in most existing literature
(but compare Mikkola & Merritt (2007); Aarseth (2007), which are on the
same level of PN accuracy). We modified the nbody6++ code to allow for
post-Newtonian (PN ) effects of two particles getting very close to each other,
implementing the 1PN , 2PN and 2.5PN corrections fully from Soffel (1989)
and Kupi, Amaro-Seoane & Spurzem (2006).

Relativistic corrections to the Newtonian forces are expressed by expand-
ing the relative acceleration between two bodies in a power series of 1/c in
the following way (Damour & Dereulle 1987; Soffel 1989),

a = a0︸︷︷︸
Newt.

+ c−2a2︸ ︷︷ ︸
1PN

+ c−4a4︸ ︷︷ ︸
2PN

︸ ︷︷ ︸
periastron shift

+ c−5a5︸ ︷︷ ︸
2.5PN
︸ ︷︷ ︸

grav. rad.

+O(c−6), (15.1)

where a is the acceleration of particle 1, a0 = −Gm2n/r
2 is the Newtonian ac-

celeration, G is the gravitation constant, m1 and m2 are the masses of the two
particles, r is the distance of the particles, n is the unit vector pointing from
particle 2 to particle 1, and the 1PN , 2PN and 2.5PN are post-Newtonian
corrections to the standard acceleration, responsible for the pericentre shift
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(1PN , 2PN ) and the quadrupole gravitational radiation (2.5PN ), corre-
spondingly, as shown in (15.1). The expressions for the accelerations are
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In the last expressions v1 and v2 are the velocities of the particles. For sim-
plification, we have denoted the vector product of two vectors, x1 and x2,
as x1x2. The basis of direct nbody4 and nbody6++ codes relies on an im-
proved Hermite integration scheme (Makino & Aarseth 1992; Aarseth 1999)
for which we need not only the accelerations but also their time derivatives.
These derivatives are not included here for succinctness. We include our cor-
rection terms in the KS regularisation scheme (Kustanheimo & Stiefel 1965)
as perturbations, similarly to what is done to account for passing stars influ-
encing a KS pair. Note that formally the perturbing force in the KS equations
does not need to be small compared to the two-body force (Mikkola 1997).
If the internal KS time step is properly adjusted, the method works even for
relativistic terms becoming comparable to the Newtonian force component.
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15.3 Example of Application to Galactic Nuclei

In Fig. 15.1 the importance of relativistic, post-Newtonian dynamics for the
separation of the binary black holes in our simulations is seen. The curve
deviates from the Newtonian results when gravitational radiation losses set
in and causes a sudden coalescence (1/a → ∞) at a finite time. Gravitational
radiation losses are enhanced by the high eccentricity of the SMBH binary. It
is interesting to note that the inclusion or exclusion of the conservative 1PN
and 2PN terms changes the coalescence time considerably. Details of these
results will be published in a larger parameter study (Berentzen et al. 2008,
in preparation). Note that Aarseth (2003a) presents two models very similar
to those discussed here, which agree qualitatively with our work regarding the
relativistic merger time and the eccentricity of the SMBH binary.

Once the SMBH binary starts to lose binding energy dramatically due to
gravitational radiation, its orbital period drops from a few thousand years
to less than a year very quickly (time-scale much shorter than the dynami-
cal time-scale in the galactic centre, which defines our time unit). Then the
SMBH binary will enter the LISA band, i.e. its gravitational radiation will be
detectable by LISA. The Laser Interferometer Space Antenna is a system of
three space probes with laser interferometers to measure gravitational waves,
see e.g. http://lisa.esa.int/. Once the SMBH binary decouples from the
rest of the system we just follow its relativistic two-body evolution, starting
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Fig. 15.1. Effect of post-Newtonian (PN) relativistic corrections on the dynamics
of black hole binaries in galactic nuclei. Plotted are inverse semi-major axis and
eccentricity as a function of time. The solid line uses the full set of PN corrections,
while the dashed line has been obtained by artificially only using the dissipative
2.5PN terms. Note that the coalescence time in the latter case has changed sig-
nificantly. Further details will be published elsewhere (Berentzen et al. 2008, in
preparation)

http://lisa.esa.int/
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with exactly the orbital parameters (including eccentricity) as they were ex-
tracted from the N -body model. It is then possible to predict the gravitational
radiation of the SMBH binary relative to the LISA sensitivity curve (Preto
et al. 2008, in preparation). For some values of the eccentricity our simu-
lated SMBH binaries indeed enter the LISA sensitivity regime; for a circular
orbit the n = 2 harmonic of the gravitational radiation is dominant, while
for eccentric orbits higher harmonics are stronger (Peters & Mathews 1963;
Peters 1964).

15.4 N -Body Algorithms and Parallelization

Numerical algorithms for solving the gravitational N -body problem (Aarseth
2003) have evolved along two main lines in recent years. Direct-summation
codes compute the complete set of N2 interparticle forces at each time step.
These codes are designed for systems in which the finite-N graininess of the
potential is important or in which binary- or multiple-star systems form, and
until recently, were limited by their O(N2) scaling to moderate (N < 105)
particle numbers. The best-known examples are the NBODY series of codes
(Aarseth 1999) and the Starlab environment developed by McMillan, Hut
and collaborators (e.g. Portegies Zwart et al. 2001).

A second class of N -body algorithms replaces the direct summation of
forces from distant particles by an approximation scheme. Examples are the
Barnes–Hut tree code (Barnes & Hut 1986), which reduces the number of
force calculations by subdividing particles into an oct-tree, and fast multipole
algorithms that represent the large-scale potential via a truncated basis-set
expansion (van Albada & van Gorkom 1977; Greengard & Rokhlin 1987). Such
algorithms have a milder O(N logN) or even O(N) scaling for the force calcu-
lations and can handle much larger particle numbers, although their accuracy
are substantially lower than that of the direct-summation codes (Spurzem
1999). The efficiency of both sorts of algorithm can be considerably increased
by the use of individual time steps for advancing particle positions (Aarseth
2003).

A natural way to increase both the speed and the particle number in
an N -body simulation is to parallelize (Dubinski 1996; Pearce & Couchman
1997). Parallelization on general-purpose supercomputers is difficult, however,
because the calculation cost is often dominated by a small number of particles
in a single dense region, e.g. the nucleus of a simulated galaxy. Communication
latency becomes the bottleneck; the time to communicate particle positions
between processors can exceed the time spent computing the forces. The best
such schemes use systolic algorithms (in which the particles are successively
passed around a ring of processors) coupled with non-blocking communica-
tion between the processors to reduce the latency (Makino 2002; Dorband,
Hemsendorf & Merritt 2003).
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A major breakthrough in direct-summation N -body simulations came in
the late 1990s with the development of the GRAPE series of special-purpose
computers (Makino & Taiji 1998), which achieve spectacular speed-ups by
implementing the entire force calculation in hardware and placing many force
pipelines on a single chip. The GRAPE-6, in its standard implementation (32
chips, 192 pipelines), can achieve sustained speeds of about 1 Tflops at a cost
of just ∼ $50 K. In a standard setup, the GRAPE-6 is attached to a single
host workstation, in much the same way that a floating-point or graphics
accelerator card is used. Advancement of particle positions [O(N)] is carried
out on the host computer, while coordinate and velocity predictions and inter-
particle forces [O(N2)] are computed on the GRAPE. More recently, “mini-
GRAPEs” (GRAPE-6A) (Fukushige, Makino & Kawai 2005) have become
available, which are designed to be incorporated into the nodes of a parallel
computer. The mini-GRAPEs have four processor chips on a single PCI card
and deliver a theoretical peak performance of ∼ 131 Gflops for systems of up
to 128 K particles, at a cost of about $6 K. By incorporating mini-GRAPEs
into a cluster, both large (106) particle numbers and high (1Tflops) speeds
can be achieved.

In the following we describe the performance of direct-summation N -body
algorithms on two computer clusters that incorporate GRAPE hardware.

15.5 Special Hardware, GRAPE and GRACE Cluster

The GRAPE-6A board (Fig. 15.2, top panel) is a standard PCI short card
on which a processor, an interface unit and a power supply are integrated.
The processor is a module consisting of four GRAPE-6 processor chips, eight
SSRAM chips and one FPGA chip. The processor chips each contain six force
calculation pipelines, a predictor pipeline, a memory interface, a control unit
and I/O ports (Makino et al. 2003). The SSRAM chips store the particle
data. The four GRAPE chips can calculate forces, their time derivatives and
the scalar gravitational potential simultaneously for a maximum of 48 par-
ticles at a time; this limit is set by the number of pipelines (six force cal-
culation pipelines each of which serves as eight virtual multiple pipelines).
There is also a facility to calculate neighbour lists from predefined neigh-
bour search radii; this feature is not used in the algorithms presented below.
The forces computed by the processor chips are summed in an FPGA chip
and sent to the host computer. A maximum of 131 072 (217) particles can
be held in the GRAPE-6A memory. The peak speed of the GRAPE-6A is
131.3 Gflops (when computing forces and their derivatives) and 87.5 Gflops
(forces only), assuming 57 and 38 floating-point operations, respectively, per
force calculation (Fukushige, Makino & Kawai 2005). The interface to the
host computer is via a standard 32-bit/33 MHz PCI bus. The FPGA chip (Al-
tera EP1K100FC256) realizes a 4-input, 1-output reduction when transferring
data from the GRAPE-6 processor chip to the host computer. The complete
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Fig. 15.2. Top: interior of a node showing a GRAPE-6A card (note the large black
fan) and an Infiniband card. Bottom: the GRACE cluster at ARI. The head node
and the 14Tbyte raid array are visible on the central rack. The other four racks hold
a total of 32 compute nodes, each equipped with a GRAPE-6A card and MPRACE
cards
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GRAPE-6A unit is roughly 11 cm × 19 cm × 7 cm in size. Note that 5.8 cm of
the height is taken up by a rather bulky combination of cooling body and fan,
which may block other slots on the main board. Possible ways to deal with
this include the use of even taller boxes for the nodes (e.g. 5U) together with
a PCI riser of up to 6 cm, which would allow the use of slots for interface cards
beneath the GRAPE fan, or the adoption of the more recent, flatter designs
such as that of the GRAPE6-BL series. The reader interested in more technical
details should seek information from the GRAPE (http://astrogrape.org)
and Hamamatsu Metrix (http:/www.metrix.co.jp) websites.

A computer cluster incorporating GRAPE-6A boards became fully op-
erational at the Rochester Institute of Technology (RIT) in February 2005.
This cluster, named “gravitySimulator,” consists of 32 compute nodes plus
one head node, each containing dual 3 GHz-Xeon processors. In addition to a
standard Gbit-ethernet, the nodes are connected via a low-latency Infiniband
network with a transfer rate of 10 Gbits. The typical latency for an Infini-
band network is of the order of 10−6 seconds, or a factor ∼ 100 better than
the Gbit-Ethernet. A total of 14 Tbyte of disc space is available on a level
5 RAID array. The disc space is equivalent to 2.5 × 105 N -body data sets
each with 106 particles. The discs are accessed via a fast Ultra320 SCSI host
adapter from the head node or via NFS from the compute nodes, which in
addition are each fitted with an 80 Gbyte hard disc. Each compute node also
contains a GRAPE-6A PCI card (Fig. 15.2, top panel). The total, theoretical
peak performance is approximately 4 Tflops if the GRAPE boards are fully
utilized. Total cost was about $ 450 000, roughly half of which was used to
purchase the GRAPE boards.

Some special considerations were required in order to incorporate the
GRAPE cards into the cluster. Since our GRAPE-6A’s use the relatively
old PCI interface standard (32 bit/33 MHz), only one motherboard was avail-
able, the SuperMicro X5DPL-iGM, that could accept both the GRAPE-6A
and the Infiniband card. (A newer version of the GRAPE-6A which uses the
faster PCI-X technology is now available.) The PC case itself has to be tall
enough (4U) to accept the GRAPE-6A card and must also allow good air flow
for cooling since the GRAPE card is a substantial heat source. The cluster
has a total power consumption of 17 kW when the GRAPEs are fully loaded.
Cluster cooling was achieved at minimal cost by redirecting the air condition-
ing from a large room toward the air-intake side of the cluster. Temperatures
measured in the PC case and at the two CPUs remain below 30◦C and 50◦C,
respectively.

A similar cluster, called “GRACE” (GRAPE + MPRACE), has been in-
stalled in the Astronomisches Rechen-Institut (ARI) at the University of
Heidelberg (Fig. 15.2, bottom panel). There are two major differences be-
tween the RIT and ARI clusters. (1) Each node of the ARI cluster incorpo-
rates a reconfigurable FPGA card (called “MPRACE”) in addition to to the
GRAPE board. MPRACE is optimized to compute neighbour forces and other
non-Newtonian forces between particles, in order to accelerate calculations of

http://astrogrape.org
http:/www.metrix.co.jp
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molecular dynamics, smoothed-particle hydrodynamics, etc. (2) The newer
main board SuperMicro X6DAE-G2 was used, which supports Pentium Xeon
chips with 64-bit technology (EM64T) and the PCIe (PCI express) bus. This
made it possible to use dual-port Infiniband interconnects via the PCI ex-
press Infiniband ×8 host interface card, used in the ×16 Infiniband slot of the
board (it has another ×4 Infiniband slot, which is reserved for the MPRACE-
2 Infiniband card). As discussed below, the use of the PCIe bus substantially
reduces communication overhead. The benchmark results presented here for
the ARI cluster were obtained from algorithms that do not access the FPGA
cards.

15.6 Performance Tests

Initial conditions for the performance tests were produced by generating
Monte-Carlo positions and velocities from self-consistent models of stellar
systems. Each of these systems is spherical and is completely described by
a steady-state phase-space distribution function f(E) and its self-consistent
potential Ψ(r), where E = v2/2+Ψ is the particle energy and r is the distance
from the centre. The models were a Plummer sphere, two King models with
different concentrations and two Dehnen models (Dehnen 1993) with different
central density slopes. The Plummer model has a low central concentration
and a finite central density; it does not represent any class of stellar system
accurately, but is a common test case. King models are defined by a single
dimensionless parameter W0 characterizing the central concentration (e.g. ra-
tio of central to mean density); we used W0 = 9 and W0 = 12, which are
appropriate for globular star clusters. Dehnen models have a divergent inner
density profile, ρ ∝ r−γ . We took γ = 0.5 and γ = 1.5, which correspond ap-
proximately to the inner density profiles of bright and faint elliptical galaxies.

In what follows we adopt standard N -body units G = M = −4E = 1,
where G is the gravitational constant, M the total mass and E the total energy
of the system. In some of the models, the initial time step for some particles
was smaller than the minimum time step tmin set to 2−23. These models were
then rescaled to change the minimum time step to a large enough value. Since
the rescaling does not influence the performance results, we will present all
results in the standard N -body units.

We realized each of the five models with 11 different particle numbers,
N = 2k, k = [10, 11, . . . , 20], i.e. N = [1K, 2K, . . . , 1M].1 We also tested
Plummer models with N = 2M and N = 4M; the latter value is the maximum
N -value allowed by filling the memory of all 32 GRAPE cards. Thus, a total
of 57 test models were used in the timing runs.

Two-body relaxation, i.e. exchange of energy between particles due to
gravitational scattering, induces a slow change in the characteristics of the

1Henceforth, we use K to denote a factor of 210 = 1024 and M to denote a factor
of 220 = 1, 048, 576.
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models. In order to minimize the effects of these changes on the timing runs,
we integrated the models for only one time unit. The standard softening ε
was set to zero for the Plummer models and to 10−4 for the Dehnen and King
models. For the time step parameters used see Harfst et al. (2007).

We analyzed the performance of the hybrid scheme as a function of particle
number and also as a function of number of nodes, using p = 1, 2, 4, 8, 16,
and 32 nodes. The compute time w for a total of almost 350 test runs was
measured using MPI Wtime(). The timing was started after all particles had
finished their initial time step and ended when the model had been evolved
for one time unit. No data evaluation was made during the timing interval.

The top panel of Fig. 15.3 shows wallclock times wN,p from all integrations
on the ARI cluster. For any p, the clock time increases with N , roughly as N2

for large N . However, when N is small, communication dominates the total
clock time, and w increases with increasing number of processors. This be-
haviour changes as N is increased; for N > 10K (the precise value depends on
the model), the clock time is found to be a decreasing function of p, indicating
that the total time is dominated by force computations.

The speedup for selected test runs is shown in the bottom panel of
Fig. 15.3. The speedup s is defined as

sN, p =
wN, 1

wN, p
. (15.5)

The ideal speedup (optimal load distribution, zero communication and la-
tency) is sN,p = p. For particle numbers N ≥ 128K the wallclock time wN,1

on one processor is undefined asN exceeds the memory of the GRAPE card. In
that case we used wN,1 = w128 K,1(N/128K)2, assuming a simple N2-scaling.
In general, the speedup for any given particle number is roughly proportional
to p for small p, then reaches a maximum before reducing at large p. The
number of processors at maximum speedup is “optimum” in the sense that
it provides the fastest possible integration of a given problem. The optimum
p is roughly the value at which the sum of the communication and latency
times equals the force computation time; in the zero-latency case, popt ∝ N
(Dorband, Hemsendorf & Merritt 2003). Figure 15.3 (bottom panel) shows
that for N ≥ 128K, popt ≥ 32 for all the tested models. The reader interested
in more details is referred to Harfst et al. (2007).

15.7 Outlook and Ahmad–Cohen Neighbour Scheme

At present there exist only the relatively simple parallel N -body code de-
scribed above and in Harfst et al. (2007), which uses GRAPE special hard-
ware in parallel, but always computes full forces for every particle at every
step. This code, sometimes dubbed p-GRAPE (sources are freely available, see
link in the cited paper) also does not include any special few-body treatments
(regularisations), as in the N -body codes of Aarseth (1999, 2003).
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There is the already mentioned parallel N -body code nbody6++, which
includes all regularizations and the use of the Ahmad-Cohen neighbour scheme
(Ahmad & Cohen 1973) as in the standard nbody6 code. However, the pub-
licly provided source code (ftp://ftp.ari.uni-heidelberg.de/pub/staff/
spurzem/nb6mpi/) is not yet able to make parallel use of special hardware.
It parallelizes very efficiently over the regular and irregular force loops (cf.
Spurzem 1999; Khalisi et al. 2003), but current work is in progress on an
implementation of nbody6++ for special-purpose hardware (such as GRAPE,
MPRACE or graphical processing units GPU) as well as on an efficient parallel
treatment of many regularized perturbed binaries (see first results in Maalej
et al. 2005). New results in these topics will be published early at the wiki of
nbody6++ developers and users at http://nb6mpi.pbwiki.com/. Last but
not least, a nice visualization interface, specially developed for nbody6++ , is
hosted by FZ Jülich, see http://www.fz-juelich.de/jsc/xnbody/.

Similar to the GRAPE development nearly two decades ago, the recent
introduction of GPUs and other new hardware devices (such as FPGA or
MPRACE cards in the GRACE project,

http://www.ari.uni-heidelberg.de/grace/) is inspiring a new interest
in improving and developing efficient N -body algorithms. It is expected that
very soon the use of most advanced special hardware and software (such as
nbody6 and nbody6++) will not mutually exclude each other any more.
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A.1 Introduction

The 2006 Cambridge N -body School introduced participants to educational
websites for N -body simulations, www.Sverre.com and www.NBodyLab.org.
These websites run versions of the freely available, open-source NBODY4,
TRIPLE and CHAIN codes (Aarseth 2003) that have been adapted for the
web. The websites provide guidance and documentation. They support simu-
lations of small N (3 and 4 bodies) on both sites and higher N (up to 15,000)
on NBodyLab.org. Numerical results, graphics and animations are displayed.
NBodyLab.org supports NBODY4, running on a GRAPE-6A hardware acceler-
ator, and demonstrates its accuracy and speed. The websites were developed
with different approaches; NBodyLab.org runs N -body codes on the server
side, and Sverre.com uses Java to run locally.

The websites were recommended as homework before the N -body School
and practical demonstrations were given during the School. Use of these sites
by participants also continued afterwards. Such web-based tools can be a use-
ful and convenient part of the curriculum for teaching N -body simulations
and also serve as test-beds for prospective buyers of GRAPE hardware accel-
erators for large simulations. This Appendix describes the websites and their
educational utility.

A.2 www.NBodyLab.org

NBodyLab.org (Johnson & Aarseth 2006) is a laboratory where we can exper-
iment with small N -body simulations with a desktop GRAPE-6A supercom-
puter (Fukushige, Makino & Kawai 2005, Makino & Taiji 1998). The NBODY4,
TRIPLE and CHAIN codes are adapted for the web from the current versions

Cancelliere, F. et al.: Educational N-Body Websites. Lect. Notes Phys. 760, 391–396 (2008)

DOI 10.1007/978-1-4020-8431-7 16 c© Springer-Verlag Berlin Heidelberg 2008



392 F. Cancelliere et al.

of the Unix/FORTRAN codes 1 and simulations are run on the server side.
Plots and 3D animations are created from the simulation output.

NBodyLab was initially developed in 2002 to augment an undergradu-
ate astrophysics course. Prior to upgrading to NBODY4, NBodyLab was used
for homework assignments, an undergraduate senior thesis on tidal shocking
of globular clusters, small system studies of Ursa Major, Hyades, Collinder
70, the solar system, Halley’s comet and a master’s thesis on N -body sim-
ulations and HR diagrams of nearby stars (Johnson & Ates 2004). Incor-
porating NBODY4 has significantly improved the site’s N -body simulation
capabilities.

Examples of NBODY4 simulations that can be run on NBodyLab.org include

• single Plummer sphere cluster model (N = 1000),
• single Plummer sphere cluster with 200 additional primordial binaries,
• two Plummer models in orbit,
• massive perturber and planetesimal disk,
• evolution of a dominant binary and
• upload specialized initial conditions.

Input parameters are entered via forms (NBODY4 concise style, or simplified):

The presentation of NBodyLab.org at the N -body School included dis-
cussion of the site’s goals, parameter limits, and an overview of the main
features of NBODY4, such as GRAPE acceleration for direct integration, reg-
ularization of close encounters and stellar evolution with mass loss and colli-
sions. The main NBODY4/6 input parameters were introduced, including model
options, choices for binaries, stellar evolution and mass loss, initial mass
function, scaling and chain regularization. NBODY4 and NBODY6 were com-
pared. It should be noted that NBODY6 uses a neighbour scheme to speed
up the integration. Output data analysis and output quantities were dis-
cussed, along with plots and stellar evolution features, such as the time

1downloads at http://www.ast.cam.ac.uk/research/nbody
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dependence of the half-mass radius and core radius in N -body units, as well
as the HR diagram for the initial and final population of single stars (see next
figures).

Animations of model evolution can be viewed in 3D with a Java applet:
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TRIPLE and CHAIN with regularization are used for small N simulations on
NBodyLab.org. Examples of three-body simulations with 3D animations in-
clude

• figure-8 periodic orbit and perturbations (Heggie 2000),
• idealized triple system and perturbations,
• Pythagorean problem and perturbations and
• criss-cross periodic orbit and perturbations (Moore 1993)

and examples of four-body simulations with 3D animations include

• great circle unstable orbit and
• symmetrical exchange for two binaries.

Examples of graphics for the three-body figure-8 stable orbit and with per-
turbations are displayed in the following figures.

A manual for running simulations with NBODY4 and NBODY6 was prepared
for the Cambridge N -body School (Aarseth & Johnson 2006). It covers pa-
rameter selection, suggested simulations, astrophysical and N -body units, in-
tegration methods, the relationship between NBODY4 and NBODY6 and other
topics. Sample runs are interpreted and annotated.

A.3 www.Sverre.com

This interactive website was made available in 2005 to support movies of
the three-body problem, where the initial conditions are specified online. In
the summer of 2006 a second similar presentation was implemented for the
four-body problem. The main technical difference is that a three-body regu-
larization method (Aarseth & Zare 1974) is used for the former while N = 4
is handled by chain regularization (Mikkola & Aarseth 1993), which can also
deal with N = 3 after one body escapes. The calculations are done in real
time by a Java applet or Java application that can be downloaded. In spite
of considerable loss in programming efficiency, owing to the use of Java in-
stead of FORTRAN, the viewing time is sufficiently short even at the highest
time-step resolution.
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Online simulations can be instructive and also great fun. For practical
convenience, only 2D calculations are performed. A number of useful features
are available, such as a scale factor for magnification, smoothness index to
vary the viewing time, maximum run time (otherwise until escape), a facility
for play, pause or reset and also for displaying the orbits at the end. The
screen shots show initial and final configurations for the two movie versions,
with the interactive initial conditions specified in appropriate boxes. The basic
FORTRAN codes without the interactive part, as well as TRIPLE and CHAIN,
can be downloaded from the URL specified above.

Some examples of interesting initial conditions are provided as templates
and shown above, together with the final orbits. Users are encouraged to
experiment by exploring the large parameter space. It can be seen that very
small changes in the initial conditions may produce widely different behaviour
owing to the chaotic nature of the problem. Although most solutions should
be accurate, complex interplays of long duration are notoriously difficult and
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even small errors are subject to exponential growth, which may lead to the
wrong outcome. However, since close two-body encounters are treated very ac-
curately with regularization, the result of the strong interactions themselves
is reliable.

A.4 Educational Utility

For undergraduate and graduate astronomy and physics courses and special
advanced programs such as the N -body School, web-based tools can be a
useful part of the curriculum. The primary educational utility of the websites
discussed here is their ease-of-use. Documentation is available for beginners
and experienced users and initial values are given for interesting examples.
Runs can be made with a click of a button and no compilation and additional
graphical displays are produced, which are not supported in the standard
code versions. Specially constructed initial conditions can also be uploaded
to satisfy individual requirements for GRAPE simulations. The websites have
also been used by researchers writing their own N -body codes, for comparing
results and testing (e.g., for stellar evolution).

The websites enable and encourage migration from simulations via the
websites to in-depth runs, code development and research on personal work-
stations. After becoming acquainted with the program functionality, users
can download the freely available open-source software and run NBODY4/6,
TRIPLE and CHAIN, with NBODY4 also available in an emulator version without
GRAPE hardware. Discussion of the programs in the book (Aarseth 2003)
and documentation on the websites facilitate online use and local computing.

Simulations on the websites have been made by users world-wide. About
300 simulations per month were run on www.NBodyLab.org in the last half
of 2006 and the guide Introduction to Running NBODY4/6 Simulations was
downloaded about 100 times per month. Following the Cambridge N -body
School, NBodyLab.org was used in late 2006 in assigned exercises for students
of a Stellar Dynamics course at the University of Bonn. In 2007, a three-body
simulation code with relativistic effects was added. The development of these
websites has led to improvements in the N -body codes and documentation.
Suggestions for other features and new educational uses are welcomed.
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